Characteristics of ageing skin:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin
2020
|
Schlagworte: | |
Online-Zugang: | Volltext Inhaltsverzeichnis |
Beschreibung: | 1 Online-Ressource (71 Blätter) Diagramme |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV046910045 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
006 | a m||| 00||| | ||
007 | cr|uuu---uuuuu | ||
008 | 200923s2020 |||| o||u| ||||||eng d | ||
024 | 7 | |a urn:nbn:de:kobv:188-refubium-28017-0 |2 urn | |
035 | |a (OCoLC)1197718753 | ||
035 | |a (DE-599)BVBBV046910045 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-578 | ||
084 | |a 610 |2 FUB | ||
100 | 1 | |a Akdeniz, Merve |e Verfasser |0 (DE-588)1218188995 |4 aut | |
245 | 1 | 0 | |a Characteristics of ageing skin |c vorgelegt von Merve Akdeniz |
264 | 1 | |a Berlin |c 2020 | |
300 | |a 1 Online-Ressource (71 Blätter) |b Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
502 | |b Dissertation |c Charité - Universitätsmedizin Berlin |d 2020 | ||
505 | 8 | |a enthält außerdem 4 Sonderabdr. aus verschiedenen Zeitschr. | |
650 | 4 | |a tewl | |
650 | 4 | |a non melanoma skin cancer | |
650 | 4 | |a skin moisture | |
650 | 4 | |a dehydration | |
650 | 4 | |a skin hydration | |
650 | 4 | |a actinic keratosis | |
650 | 4 | |a Transepidermal water loss | |
650 | 4 | |a corneometer | |
650 | 4 | |a Tewameter | |
650 | 4 | |a basal cell carcinoma | |
650 | 4 | |a cutaneous squamous cell carcinoma | |
650 | 4 | |a water loss dehydration | |
650 | 4 | |a serum osmolality | |
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |w (DE-604)BV046910052 |
856 | 4 | 0 | |u https://refubium.fu-berlin.de/handle/fub188/28017 |x Resolving-System |z kostenfrei |3 Volltext |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032319525&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
912 | |a ebook | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032319525 |
Datensatz im Suchindex
_version_ | 1804181789697114112 |
---|---|
adam_text | CONTENTS
PREFACE
.....................................................................................................
V
THE
AUTHORS
............................................................................................
VII
1
INTRODUCTION
.....................................................................................
1
1.1
TECHNICAL
AND
ECONOMIC
IMPORTANCE
OF
EXTRUDERS
..................................
1
1.1.1
EXTRUDER
TYPES
AND
TERMS
.............................................................
1
1.1.2
SCREW
MACHINES
AND
PLASTICS
..........................................................
2
1.1.3
ECONOMIC
CORE
FUNCTION
OF
AN
EXTRUDER
IN
THE
PLASTICS
INDUSTRY
3
1.1.4
EXTRUDER
TYPES
AND
ADVANTAGES
OF
CLOSELY
INTERMESHING
CO-ROTATING
SCREWS
.........................................................................
5
1.1.5
FIRST
CLOSELY
INTERMESHING
CO-ROTATING
SCREWS
............................
6
1.1.6
DETAILS
OF
TWIN-SCREWS
...................................................................
8
1.1.7
OBJECTIVE
OF
THE
BOOK
.....................................................................
9
1.1.8
SUMMARY
.........................................................................................
10
1.1.9
PROSPECTS
.........................................................................................
10
1.2
HISTORICAL
DEVELOPMENT
OF
CO-ROTATING
TWIN-SCREW
EXTRUDERS
..............
11
1.2.1
PREFACE
AND
RECOGNITION
OF
BAYER
SCIENTISTS
................................
11
1.2.2
HISTORICAL
DEVELOPMENT
OF
CO-ROTATING
TWIN-SCREW
EXTRUDERS
..
17
1.2.2.1
EARLY
DEVELOPMENTS
.........................................................
17
1.2.2.2
PIONEERING
PERIOD
.............................................................
29
1.2.2.3
NEW
HIGH-VISCOSITY TECHNOLOGY
WITH
CO-ROTATING
EXTRUDERS
...........................................................................
32
1.2.2.4
SPECIAL
DEVELOPMENTS
FROM
BAYER-HOCHVISKOSTECHNIK
(HIGH
VISCOSITY
TECHNOLOGY
GROUP)
................................
37
1.2.2.5
DEVELOPMENTS
AFTER
LICENSING
..........................................
39
1.2.2.6
DEVELOPMENTS
AFTER
EXPIRATION
OF
THE
PRIMARY
PATENTS
..
42
1.3
GENERAL
OVERVIEW
OF
THE
COMPOUNDING
PROCESS:
TASKS,
SELECTED
APPLICATIONS,
AND
PROCESS
ZONES
................................................
45
1.3.1
COMPOUNDING
TASKS
AND
REQUIREMENTS
........................................
45
1.3.2
TASKS
AND
DESIGN
OF
THE
PROCESSING
ZONES
OF
A
COMPOUNDING
EXTRUDER
..................................................................
47
1.3.2.1
INTAKE
ZONE
........................................................................
49
1.3.2.2
PLASTIFICATION
ZONE
............................................................
50
1.3.2.3
MELT
CONVEYING
ZONE
........................................................
55
1.3.2.4
DISTRIBUTIVE
MIXING
ZONE
..................................................
56
1.3.2.5
DISPERSIVE
MIXING
ZONE
....................................................
58
1.3.2.6
DEVOLATILIZATION
ZONE
........................................................
60
1.3.2.7
PRESSURE
BUILD-UP
ZONE
....................................................
61
1.3.3
CHARACTERISTIC
PROCESS
PARAMETERS
................................................
64
1.3.3.1
SPECIFIC
ENERGY
INPUT
........................................................
64
1.3.3.2
RESIDENCE
TIME
CHARACTERISTICS
......................................
66
1.3.4
PROCESS
EXAMPLES
............................................................................
68
1.3.4.1
INCORPORATION
OF
GLASS
FIBERS
..........................................
68
1.3.4.2
INCORPORATION
OF
FILLERS
...................................................
72
1.3.4.3
PRODUCTION
OF
MASTERBATCHES
...........................................
73
1.3.4.4
COLORING
.............................................................................
76
1.4
PROCESS
UNDERSTANDING
-
OVERVIEW
AND
EVALUATION
OF
EXPERIMENTS
AND
MODELS
....................................................................................................
79
1.4.1
INTRODUCTION
......................................................................................
79
1.4.2
CLASSIFICATION
OF
MODELS
AND
EXPERIMENTS
....................................
82
1.4.3
SOLID
MATERIALS
.................................................................................
84
1.4.4
HIGHLY
VISCOUS
LIQUIDS
....................................................................
85
1.4.4.1
ONE-DIMENSIONAL
MODELS
..................................................
85
1.4.4.2
THREE-DIMENSIONAL
MODELS
..............................................
90
1.4.5
SUMMARY
..........................................................................................
92
1.4.6
PROSPECTS
AND
PROPOSALS
.................................................................
94
1.4.6.1
PROGRAM
FOR
EXTRUDER
CONFIGURATION
..............................
94
1.4.6.2
FURTHER
DEVELOPMENT
OF
MODELS
......................................
94
1.4.6.3
NEW
MODEL
APPLICATIONS
-
ONLINE
..................................
94
1.4.6.4
PROCESS
CHARACTERIZATION
OF
SCREW
ELEMENTS
BY
KEY
FIGURES
..................................................................
96
1.5
CONVEYING
AND
POWER
PARAMETERS
OF
STANDARD
CONVEYING
ELEMENTS
....
97
1.6
FREQUENTLY
USED
SYMBOLS
............................................................................
98
2
BASICS
-
SCREW
ELEMENTS
...............................................................
101
2.1
GEOMETRY
OF
CO-ROTATING
EXTRUDERS:
CONVEYING
AND
KNEADING
ELEMENTS,
INCLUDING
CLEARANCE
STRATEGIES
........................
101
2.1.1
INTRODUCTION
......................................................................................
101
2.1.2
THE
FULLY
WIPED
PROFILE
FROM
ARCS
................................................
102
2.1.3
GEOMETRIC
DESIGN
OF
FULLY
WIPED
PROFILES
....................................
104
2.1.4
DIMENSIONS
OF
SCREW
ELEMENTS
WITH
CLEARANCES
..........................
105
2.1.5
TRANSITION
BETWEEN
DIFFERENT
NUMBERS
OF
THREADS
......................
109
2.1.6
CALCULATION
OF
A
SCREW
PROFILE
FOR
PRODUCTION
ACCORDING
TO
PLANAR
OFFSET
...................................................................................
110
2.1.7
FREE
CROSS-SECTIONAL
AREA
..............................................................
113
2.1.8
SURFACE
OF
BARREL
AND
CONVEYING
ELEMENTS
..................................
113
2.1.9
KNEADING
ELEMENTS
.........................................................................
115
2.1.10
NEW
DEVELOPMENTS
WITH
SCREW
GEOMETRIES
..................................
117
2.2
SCREW
ELEMENTS
AND
THEIR
USE
.................................................................
118
2.2.1
CONSTRUCTION
OF
SCREW
ELEMENTS
....................................................
119
2.2.2
COMBINING
SCREW
ELEMENTS
............................................................
124
2.2.3
SCREW
ELEMENTS
AND
THEIR
OPERATING
PRINCIPLES
..........................
127
2.2.3.1
CONVEYING
ELEMENTS
.........................................................
127
2.2.3.2
KNEADING
ELEMENTS
.........................................................
132
2.2.3.3
SEALING
ELEMENTS
............................................................
136
2.2.3.4
MIXING
ELEMENTS
..............................................................
138
2.2.3.5
SPECIAL
ELEMENTS
.............................................................
142
2.3
OVERVIEW
OF
PATENTED
SCREW
ELEMENTS
......................................................
147
2.3.1
WO
2009152910,
EP
2291277,
US
20110110183
........................
149
2.3.2
WO
2011039016,
EP
2483051,
US
20120320702
........................
150
2.3.3
WO
2011069896,
EP
2509765,
US
20120281001
........................
151
2.3.4
DE
00813154,
US
2670188
...........................................................
152
2.3.5
DE
19947967,
EP
1121238,
WO
2000020188
..............................
153
2.3.6
US
1868671
.....................................................................................
154
2.3.7
DE
10207145,
EP
1476290,
US
20050152214
............................
154
2.3.8
DE
00940109,
US
2814472
...........................................................
155
2.3.9
US
5713209
.....................................................................................
155
2.3.10
US
3717330,
DE
2128468
.............................................................
156
2.3.11
DE
4118530,
EP
516936,
US
5338112
..........................................
157
2.3.12
US
4131371
.....................................................................................
158
2.3.13
DE
03412258,
US
4824256
...........................................................
158
2.3.14
DE
1180718,
US
3254367
.............................................................
159
2.3.15
US
3900187
.....................................................................................
160
2.3.16
WO
2009153003,
EP
2303544,
US
20110112255
........................
161
2.3.17
WO
2009152974,
EP
2291279,
US
20110180949
........................
162
2.3.18
US
3216706
.....................................................................................
163
2.3.19
WO
2009152968,
EP
2303531,
US
20110158039
........................
164
2.3.20
WO
2013045623,
EP
2760658
.....................................................
165
2.3.21
WO
2009152973,
EP
2291270,
US
20110141843
........................
166
2.3.22
WO
2009153002,
EP
2307182,
US
20110096617
........................
167
2.3.23
EP
0002131,
JP
54072265,
US
4300839
......................................
168
2.3.24
DE
19718292,
EP
0875356,
US
6048088
......................................
169
2.3.25
DE
04239220
....................................................................................
169
2.3.26
DE
01529919,
US
3288077
............................................................
170
2.3.27
EP
0330308,
US
5048971
..............................................................
171
2.3.28
DE
10114727,
US
6974243,
WO
2002076707
..............................
172
2.3.29
US
6783270,
WO
2002009919
......................................................
173
2.3.30
WO
2013128463,
EP
2747980,
US
20140036614
........................
174
2.3.31
JP
2008183721,
DE
102007055764,
US
2008181051
................
175
2.3.32
DE
4329612,
EP
641640,
US
5573332
..........................................
176
2.3.33
DE
19860256,
EP
1013402,
US
6179460
.....................................
177
2.3.34
DE
04134026,
EP
0537450,
US
5318358
.....................................
177
2.3.35
DE
19706134
....................................................................................
178
2.3.36
JP
2013028055
................................................................................
179
2.3.37
WO
1998013189,
US
6022133,
EP
934151
..................................
179
2.3.38
WO
1999025537,
EP
1032492
......................................................
180
2.3.39
US
6116770,
EP
1035960,
WO
2000020189
................................
180
2.3.40
DE
29901899
U1
..............................................................................
181
2.3.41
US
6170975,
WO
2000047393
......................................................
181
2.3.42
DE
10150006,
EP
1434679,
US
7080935
......................................
182
2.3.43
DE
4202821,
US
5267788,
WO
1993014921
................................
182
2.3.44
DE
03014643,
EP
0037984,
US
4352568
......................................
183
2.3.45
DE
02611908,
US
4162854
............................................................
184
2.3.46
WO
1995033608,
US
5487602,
EP
764074
..................................
185
2.3.47
DE
102004010553
..........................................................................
186
2.3.48
DE
04115591,
EP
0513431
............................................................
187
2.3.49
WO
2011073181,
EP
2512776,
US
20120245909
........................
188
3
MATERIAL
PROPERTIES
OF
POLYMERS
..................................................
189
3.1
RHEOLOGICAL
PROPERTIES
OF
POLYMER
MELTS
.................................................
189
3.1.1
INTRODUCTION
AND
MOTIVATION
..........................................................
189
3.1.2
CLASSIFICATION
OF
RHEOLOGICAL
BEHAVIOR OF
SOLIDS
AND
FLUIDS
........
190
3.1.3
COMPARISON
OF
VISCOUS
FLUID
AND
VISCOELASTIC
FLUID
..................
195
3.1.3.1
VISCOUS
FLUIDS
....................................................................
195
3.1.3.2
VISCOELASTIC
FLUIDS
............................................................
196
3.1.4
TEMPERATURE
DEPENDENCE
OF
SHEAR
VISCOSITY
................................
199
3.1.4.1
TEMPERATURE
DEPENDENCE
FOR
SEMI-CRYSTALLINE
POLYMERS
..............................................
200
3.1.4.2
TEMPERATURE
DEPENDENCE
FOR
AMORPHOUS
POLYMERS
...
201
3.1.5
INFLUENCE
OF
MOLECULAR
PARAMETERS
ON
RHEOLOGICAL
PROPERTIES
OF
POLYMER
MELTS
..............................................................................
202
3.1.6
SHEAR
FLOWS
.....................................................................................
204
3.1.6.1
FLOW
PROFILES
OF
PRESSURE-DRIVEN
PIPE
FLOW
....................
205
3.1.6.2
FLOW
PROFILES
OF
SIMPLE
DRAG
FLOW
..................................
206
3.1.7
EXTENSIONAL
FLOWS
...........................................................................
208
3.2
MATERIAL
BEHAVIOR
OF
BLENDS
-
CONSIDERATION
OF
POLYMER-FILLER
AND
POLYMER-POLYMER
SYSTEMS
..........................................................................
210
3.2.1
MATERIAL
PROPERTIES
OF
TWO-SUBSTANCE
SYSTEMS
.............................
212
3.2.1.1
INTRODUCTION
TO
MIXED
SYSTEMS
........................................
212
3.2.1.2
THERMODYNAMIC
MATERIAL
DATA
OF
TWO-SUBSTANCE
MIXTURES
...........................................................................
212
3.2.1.3
VISCOSITIES
OF
TWO-SUBSTANCE
MIXTURES
.........................
214
3.2.1.4
COMPATIBLE
POLYMER
BLENDS
...........................................
216
3.2.1.5
IMMISCIBLE
(INCOMPATIBLE)
POLYMER
BLENDS
....................
216
3.2.2
PROCESS
BEHAVIOR
DURING
PLASTICIZING
OF
TWO-SUBSTANCE
POLYMER
SYSTEMS
.............................................................................
219
3.2.2.1
CALCULATION
OF
THE
MELTING
BEHAVIOR
OF
TWO-SUBSTANCE
SYSTEMS
.............................................................................
224
3.2.3
FINAL
REMARKS
FOR
USE
IN
PRACTICE
..................................................
224
3.2.4
CONCLUSION
.......................................................................................
225
3.3
DIFFUSIVE
MASS
TRANSPORT
IN
POLYMERS
.......................................................
227
3.3.1
MECHANISMS
OF
MASS
TRANSPORT
.......................................................
227
3.3.1.1
CONCENTRATION
DISTRIBUTION
NEAR
THE
PHASE
INTERFACE
..
228
3.3.2
INFLUENCING
QUANTITIES
OF
THE
MATERIAL
PROPERTIES
........................
247
3.4
INFLUENCE
FACTORS
AND
REDUCTION
OF
DEGRADATION
DURING
POLYMER
PROCESSING
.....................................................................................
252
3.4.1
INTRODUCTION
.....................................................................................
252
3.4.2
CHEMICAL
REACTIONS
.........................................................................
253
3.4.2.1
DAMAGE
THROUGH
THERMAL
DEGRADATION
..........................
254
3.4.2.2
OXIDATIVE
DEGRADATION
......................................................
256
3.4.2.3
CHEMICAL
DEGRADATION
REACTIONS
VIA
RESIDUAL
WATER
...
258
3.4.2.4
DEGRADATION
VIA
MECHANICAL
STRESS
................................
259
3.4.2.5
INFLUENCE
OF
METALS
ON
DEGRADATION
................................
259
3.4.3
RELATIONSHIP
BETWEEN
POLYMER
DEGRADATION
AND
PROPERTIES
....
260
3.4.4
REDUCTION
OF
POLYMER
DEGRADATION
DURING
PROCESSING
................
262
3.4.4.1
EXTRUDER
SCREW
DESIGN
OR
PROCESSING
PARAMETERS
........
262
3.4.4.2
CHANGES
OF
MELT
FLOW
BEHAVIOR
VIA
MOLECULAR
WEIGHT
AND
FLOW
MODIFIERS
.........................................................
263
5.4.4.3
MINIMIZATION
OF
REACTION
PARTNERS
..................................
264
3.4.4.4 ADDITIVES
FOR
REDUCTION
OF
POLYMER
DEGRADATION
..........
264
3.4.5
SUMMARY
.........................................................................................
266
3.5
CALCULATION
BASIS
FOR
THE
FLOW
IN
WEDGE
SHAPED
SHEAR
GAPS
AND
FLOW
PROPERTIES
OF
FILLED
POLYMER
MELTS
............................................
268
3.5.1
CONSIDERATION
OF
PSEUDOPLASTIC
FLOW
BEHAVIOR
OF
PLASTIC
MELTS
IN
THE
WEDGE
GAP
FLOW
AND
KEY
NUMBERS
FOR
THE
EVALUATION
OF
THE
DISPERSION
..............................................................................
268
3.5.1.1
INTRODUCTION
-
DEFORMATION
OF
PLASTIC
MELTS,
SHEAR,
AND
ELONGATION
IN
THE
WEDGE
GAP
FLOW
..........................
268
3.5.1.2
CALCULATION
OF
THE
WEDGE
GAP
FLOW
FOR
HIGHLY
VISCOUS
FLUIDS
....................................................................
271
3.5.1.3
PLASTIC
MELTS
WITH
DIFFERENT
PSEUDOPLASTIC
FLOW
BEHAVIOR
....................................................................
274
3.5.1.4
RESULTS
OF
THE
SIMULATION
.................................................
276
3.5.2
MODELING
OF
THE
FLOW
BEHAVIOR
OF
HIGHLY
FILLED
PLASTICS
..............
285
3.5.2.1
VISCOSITY
OF
POLYMERS
WITH
DIFFERENT
FILLER
CONTENTS
...
285
3.5.2.2
CARPOW
APPROACH
FOR
THE
VISCOSITY
FUNCTION
OF
HIGHLY
FILLED
POLYMERS
......................................................
288
3.5.2.3
SUMMARY
.........................................................................
289
4
CONVEYING
BEHAVIOR,
PRESSURE
AND
PERFORMANCE
BEHAVIOR
....
291
4.1
INTRODUCTION
OF
CONVEYING
AND
PRESSURE
BEHAVIOR
OF
HIGHLY
VISCOUS
LIQUIDS
IN
EXTRUDERS
......................................................................
291
4.1.1
THROUGHPUT
AND
PRESSURE
BEHAVIOR,
DIMENSIONLESS
KEY
FIGURES
......................................................................................
291
4.1.1.1
SHEAR
RATE
AND
VISCOSITY
..................................................
291
4.1.1.2
SIMPLE
QUALITATIVE
CONSIDERATION
ON
SIMPLE
PLANE
FLOW
..........................................................................
293
4.1.1.3
EXTRUDER
KEY
FIGURES
AND
PRESSURE
BASIC
EQUATION
F
OR
EXTRUDERS
......................................................................
300
4.2
INTRODUCTION
OF
THE
PERFORMANCE
BEHAVIOR
OF
HIGHLY
VISCOUS
LIQUIDS
IN
EXTRUDERS
..................................................................................................
320
4.2.1
THROUGHPUT
PERFORMANCE
BEHAVIOR
OF
THE
PLANE
FLOW
BETWEEN
TWO
PLATES
........................................................................................
320
4.2.2
PERFORMANCE
KEY
FIGURE
FOR
AN
ANNULAR
GAP
................................
321
4.2.3
BASIC
EQUATION
OF
THE
PERFORMANCE
CHARACTERISTIC
OF
EXTRUDERS
..
323
4.3
DISSIPATION,
PUMP
EFFICIENCY
DEGREE,
TEMPERATURE
INCREASE,
AND
HEAT
TRANSFER
........................................................................................
326
4.3.1
DISSIPATION
........................................................................................
326
4.3.2
PUMP
EFFICIENCY
DEGREE
...................................................................
326
4.3.3
TEMPERATURE
INCREASE
......................................................................
329
4.3.4
HEAT
TRANSFER
....................................................................................
337
4.4
PROSPECT
TO
THE
SECTIONS
4.1,4.2,
AND
4.3
...................................................
339
4.5
PRESSURE
GENERATION
AND
ENERGY
INPUT
IN
THE
MELT
..................................
341
4.5.1
OPERATING
CONDITIONS
OF
CONVEYING
SCREW
ELEMENTS
..................
341
4.5.2
ILLUSTRATION
OF
DIMENSIONLESS
GROUPS
............................................
343
4.5.3
CALCULATION
OF
THE
BACK-PRESSURE
LENGTH
......................................
349
4.5.4
EFFICIENCY
DURING
PRESSURE
GENERATION
..........................................
350
4.5.5
EXAMPLE
FOR
THE
DESIGN
OF
A
PRESSURE
BUILD-UP
ZONE
..................
352
4.5.6
PRESSURE
AND
ENERGY
BEHAVIOR
WITH
SHEAR
THINNING
..................
353
4.6
TASKS
REGARDING
THE
POWER
INPUT
AND
THE
BACK-PRESSURE
LENGTH
..........
360
4.6.1
TASK:
INFLUENCE
OF
THE
FLIGHT
PITCH
..................................................
360
4.6.2
TASK:
PARTIAL
FILLING
.........................................................................
362
4.6.3
TASK:
DESIGN
OF
A
PRESSURE
BUILD-UP
ZONE
WITH
UNIFORM
PITCH
AS
WELL
AS
FULLY
AND
PARTIALLY
FILLED
AREAS
....................................
363
4.6.4
TASK:
DESIGN
OF
THE
PRESSURE
BUILD-UP
ZONE
WITH
VARIOUS
ELEMENTS
WITH
40
MM
AND
60
MM
PITCH
COMBINED
....
367
4.6.5
TASK:
IMPACT
OF
SHEAR
THINNING
EFFECTS
........................................
368
4.7
COMPUTATIONAL
FLUID
DYNAMICS
.................................................................
370
4.7.1
INTRODUCTION
TO
COMPUTATIONAL
FLUID
DYNAMICS
............................
370
4.7.2
FULLY
FILLED
SCREW
SECTIONS
...........................................................
374
4.7.2.1
EXAMPLE
1
.........................................................................
374
4.7.2.2
EXAMPLE
2
.........................................................................
391
4.7.2.3
CONCLUSION
AND
OUTLOOK
....................................................
393
4.7.3
PARTLY
FILLED
SCREW
SECTIONS
...........................................................
397
INDEX
..........................................................................................................
405
|
adam_txt |
CONTENTS
PREFACE
.
V
THE
AUTHORS
.
VII
1
INTRODUCTION
.
1
1.1
TECHNICAL
AND
ECONOMIC
IMPORTANCE
OF
EXTRUDERS
.
1
1.1.1
EXTRUDER
TYPES
AND
TERMS
.
1
1.1.2
SCREW
MACHINES
AND
PLASTICS
.
2
1.1.3
ECONOMIC
CORE
FUNCTION
OF
AN
EXTRUDER
IN
THE
PLASTICS
INDUSTRY
3
1.1.4
EXTRUDER
TYPES
AND
ADVANTAGES
OF
CLOSELY
INTERMESHING
CO-ROTATING
SCREWS
.
5
1.1.5
FIRST
CLOSELY
INTERMESHING
CO-ROTATING
SCREWS
.
6
1.1.6
DETAILS
OF
TWIN-SCREWS
.
8
1.1.7
OBJECTIVE
OF
THE
BOOK
.
9
1.1.8
SUMMARY
.
10
1.1.9
PROSPECTS
.
10
1.2
HISTORICAL
DEVELOPMENT
OF
CO-ROTATING
TWIN-SCREW
EXTRUDERS
.
11
1.2.1
PREFACE
AND
RECOGNITION
OF
BAYER
SCIENTISTS
.
11
1.2.2
HISTORICAL
DEVELOPMENT
OF
CO-ROTATING
TWIN-SCREW
EXTRUDERS
.
17
1.2.2.1
EARLY
DEVELOPMENTS
.
17
1.2.2.2
PIONEERING
PERIOD
.
29
1.2.2.3
NEW
HIGH-VISCOSITY TECHNOLOGY
WITH
CO-ROTATING
EXTRUDERS
.
32
1.2.2.4
SPECIAL
DEVELOPMENTS
FROM
BAYER-HOCHVISKOSTECHNIK
(HIGH
VISCOSITY
TECHNOLOGY
GROUP)
.
37
1.2.2.5
DEVELOPMENTS
AFTER
LICENSING
.
39
1.2.2.6
DEVELOPMENTS
AFTER
EXPIRATION
OF
THE
PRIMARY
PATENTS
.
42
1.3
GENERAL
OVERVIEW
OF
THE
COMPOUNDING
PROCESS:
TASKS,
SELECTED
APPLICATIONS,
AND
PROCESS
ZONES
.
45
1.3.1
COMPOUNDING
TASKS
AND
REQUIREMENTS
.
45
1.3.2
TASKS
AND
DESIGN
OF
THE
PROCESSING
ZONES
OF
A
COMPOUNDING
EXTRUDER
.
47
1.3.2.1
INTAKE
ZONE
.
49
1.3.2.2
PLASTIFICATION
ZONE
.
50
1.3.2.3
MELT
CONVEYING
ZONE
.
55
1.3.2.4
DISTRIBUTIVE
MIXING
ZONE
.
56
1.3.2.5
DISPERSIVE
MIXING
ZONE
.
58
1.3.2.6
DEVOLATILIZATION
ZONE
.
60
1.3.2.7
PRESSURE
BUILD-UP
ZONE
.
61
1.3.3
CHARACTERISTIC
PROCESS
PARAMETERS
.
64
1.3.3.1
SPECIFIC
ENERGY
INPUT
.
64
1.3.3.2
RESIDENCE
TIME
CHARACTERISTICS
.
66
1.3.4
PROCESS
EXAMPLES
.
68
1.3.4.1
INCORPORATION
OF
GLASS
FIBERS
.
68
1.3.4.2
INCORPORATION
OF
FILLERS
.
72
1.3.4.3
PRODUCTION
OF
MASTERBATCHES
.
73
1.3.4.4
COLORING
.
76
1.4
PROCESS
UNDERSTANDING
-
OVERVIEW
AND
EVALUATION
OF
EXPERIMENTS
AND
MODELS
.
79
1.4.1
INTRODUCTION
.
79
1.4.2
CLASSIFICATION
OF
MODELS
AND
EXPERIMENTS
.
82
1.4.3
SOLID
MATERIALS
.
84
1.4.4
HIGHLY
VISCOUS
LIQUIDS
.
85
1.4.4.1
ONE-DIMENSIONAL
MODELS
.
85
1.4.4.2
THREE-DIMENSIONAL
MODELS
.
90
1.4.5
SUMMARY
.
92
1.4.6
PROSPECTS
AND
PROPOSALS
.
94
1.4.6.1
PROGRAM
FOR
EXTRUDER
CONFIGURATION
.
94
1.4.6.2
FURTHER
DEVELOPMENT
OF
MODELS
.
94
1.4.6.3
NEW
MODEL
APPLICATIONS
-
ONLINE
.
94
1.4.6.4
PROCESS
CHARACTERIZATION
OF
SCREW
ELEMENTS
BY
KEY
FIGURES
.
96
1.5
CONVEYING
AND
POWER
PARAMETERS
OF
STANDARD
CONVEYING
ELEMENTS
.
97
1.6
FREQUENTLY
USED
SYMBOLS
.
98
2
BASICS
-
SCREW
ELEMENTS
.
101
2.1
GEOMETRY
OF
CO-ROTATING
EXTRUDERS:
CONVEYING
AND
KNEADING
ELEMENTS,
INCLUDING
CLEARANCE
STRATEGIES
.
101
2.1.1
INTRODUCTION
.
101
2.1.2
THE
FULLY
WIPED
PROFILE
FROM
ARCS
.
102
2.1.3
GEOMETRIC
DESIGN
OF
FULLY
WIPED
PROFILES
.
104
2.1.4
DIMENSIONS
OF
SCREW
ELEMENTS
WITH
CLEARANCES
.
105
2.1.5
TRANSITION
BETWEEN
DIFFERENT
NUMBERS
OF
THREADS
.
109
2.1.6
CALCULATION
OF
A
SCREW
PROFILE
FOR
PRODUCTION
ACCORDING
TO
PLANAR
OFFSET
.
110
2.1.7
FREE
CROSS-SECTIONAL
AREA
.
113
2.1.8
SURFACE
OF
BARREL
AND
CONVEYING
ELEMENTS
.
113
2.1.9
KNEADING
ELEMENTS
.
115
2.1.10
NEW
DEVELOPMENTS
WITH
SCREW
GEOMETRIES
.
117
2.2
SCREW
ELEMENTS
AND
THEIR
USE
.
118
2.2.1
CONSTRUCTION
OF
SCREW
ELEMENTS
.
119
2.2.2
COMBINING
SCREW
ELEMENTS
.
124
2.2.3
SCREW
ELEMENTS
AND
THEIR
OPERATING
PRINCIPLES
.
127
2.2.3.1
CONVEYING
ELEMENTS
.
127
2.2.3.2
KNEADING
ELEMENTS
.
132
2.2.3.3
SEALING
ELEMENTS
.
136
2.2.3.4
MIXING
ELEMENTS
.
138
2.2.3.5
SPECIAL
ELEMENTS
.
142
2.3
OVERVIEW
OF
PATENTED
SCREW
ELEMENTS
.
147
2.3.1
WO
2009152910,
EP
2291277,
US
20110110183
.
149
2.3.2
WO
2011039016,
EP
2483051,
US
20120320702
.
150
2.3.3
WO
2011069896,
EP
2509765,
US
20120281001
.
151
2.3.4
DE
00813154,
US
2670188
.
152
2.3.5
DE
19947967,
EP
1121238,
WO
2000020188
.
153
2.3.6
US
1868671
.
154
2.3.7
DE
10207145,
EP
1476290,
US
20050152214
.
154
2.3.8
DE
00940109,
US
2814472
.
155
2.3.9
US
5713209
.
155
2.3.10
US
3717330,
DE
2128468
.
156
2.3.11
DE
4118530,
EP
516936,
US
5338112
.
157
2.3.12
US
4131371
.
158
2.3.13
DE
03412258,
US
4824256
.
158
2.3.14
DE
1180718,
US
3254367
.
159
2.3.15
US
3900187
.
160
2.3.16
WO
2009153003,
EP
2303544,
US
20110112255
.
161
2.3.17
WO
2009152974,
EP
2291279,
US
20110180949
.
162
2.3.18
US
3216706
.
163
2.3.19
WO
2009152968,
EP
2303531,
US
20110158039
.
164
2.3.20
WO
2013045623,
EP
2760658
.
165
2.3.21
WO
2009152973,
EP
2291270,
US
20110141843
.
166
2.3.22
WO
2009153002,
EP
2307182,
US
20110096617
.
167
2.3.23
EP
0002131,
JP
54072265,
US
4300839
.
168
2.3.24
DE
19718292,
EP
0875356,
US
6048088
.
169
2.3.25
DE
04239220
.
169
2.3.26
DE
01529919,
US
3288077
.
170
2.3.27
EP
0330308,
US
5048971
.
171
2.3.28
DE
10114727,
US
6974243,
WO
2002076707
.
172
2.3.29
US
6783270,
WO
2002009919
.
173
2.3.30
WO
2013128463,
EP
2747980,
US
20140036614
.
174
2.3.31
JP
2008183721,
DE
102007055764,
US
2008181051
.
175
2.3.32
DE
4329612,
EP
641640,
US
5573332
.
176
2.3.33
DE
19860256,
EP
1013402,
US
6179460
.
177
2.3.34
DE
04134026,
EP
0537450,
US
5318358
.
177
2.3.35
DE
19706134
.
178
2.3.36
JP
2013028055
.
179
2.3.37
WO
1998013189,
US
6022133,
EP
934151
.
179
2.3.38
WO
1999025537,
EP
1032492
.
180
2.3.39
US
6116770,
EP
1035960,
WO
2000020189
.
180
2.3.40
DE
29901899
U1
.
181
2.3.41
US
6170975,
WO
2000047393
.
181
2.3.42
DE
10150006,
EP
1434679,
US
7080935
.
182
2.3.43
DE
4202821,
US
5267788,
WO
1993014921
.
182
2.3.44
DE
03014643,
EP
0037984,
US
4352568
.
183
2.3.45
DE
02611908,
US
4162854
.
184
2.3.46
WO
1995033608,
US
5487602,
EP
764074
.
185
2.3.47
DE
102004010553
.
186
2.3.48
DE
04115591,
EP
0513431
.
187
2.3.49
WO
2011073181,
EP
2512776,
US
20120245909
.
188
3
MATERIAL
PROPERTIES
OF
POLYMERS
.
189
3.1
RHEOLOGICAL
PROPERTIES
OF
POLYMER
MELTS
.
189
3.1.1
INTRODUCTION
AND
MOTIVATION
.
189
3.1.2
CLASSIFICATION
OF
RHEOLOGICAL
BEHAVIOR OF
SOLIDS
AND
FLUIDS
.
190
3.1.3
COMPARISON
OF
VISCOUS
FLUID
AND
VISCOELASTIC
FLUID
.
195
3.1.3.1
VISCOUS
FLUIDS
.
195
3.1.3.2
VISCOELASTIC
FLUIDS
.
196
3.1.4
TEMPERATURE
DEPENDENCE
OF
SHEAR
VISCOSITY
.
199
3.1.4.1
TEMPERATURE
DEPENDENCE
FOR
SEMI-CRYSTALLINE
POLYMERS
.
200
3.1.4.2
TEMPERATURE
DEPENDENCE
FOR
AMORPHOUS
POLYMERS
.
201
3.1.5
INFLUENCE
OF
MOLECULAR
PARAMETERS
ON
RHEOLOGICAL
PROPERTIES
OF
POLYMER
MELTS
.
202
3.1.6
SHEAR
FLOWS
.
204
3.1.6.1
FLOW
PROFILES
OF
PRESSURE-DRIVEN
PIPE
FLOW
.
205
3.1.6.2
FLOW
PROFILES
OF
SIMPLE
DRAG
FLOW
.
206
3.1.7
EXTENSIONAL
FLOWS
.
208
3.2
MATERIAL
BEHAVIOR
OF
BLENDS
-
CONSIDERATION
OF
POLYMER-FILLER
AND
POLYMER-POLYMER
SYSTEMS
.
210
3.2.1
MATERIAL
PROPERTIES
OF
TWO-SUBSTANCE
SYSTEMS
.
212
3.2.1.1
INTRODUCTION
TO
MIXED
SYSTEMS
.
212
3.2.1.2
THERMODYNAMIC
MATERIAL
DATA
OF
TWO-SUBSTANCE
MIXTURES
.
212
3.2.1.3
VISCOSITIES
OF
TWO-SUBSTANCE
MIXTURES
.
214
3.2.1.4
COMPATIBLE
POLYMER
BLENDS
.
216
3.2.1.5
IMMISCIBLE
(INCOMPATIBLE)
POLYMER
BLENDS
.
216
3.2.2
PROCESS
BEHAVIOR
DURING
PLASTICIZING
OF
TWO-SUBSTANCE
POLYMER
SYSTEMS
.
219
3.2.2.1
CALCULATION
OF
THE
MELTING
BEHAVIOR
OF
TWO-SUBSTANCE
SYSTEMS
.
224
3.2.3
FINAL
REMARKS
FOR
USE
IN
PRACTICE
.
224
3.2.4
CONCLUSION
.
225
3.3
DIFFUSIVE
MASS
TRANSPORT
IN
POLYMERS
.
227
3.3.1
MECHANISMS
OF
MASS
TRANSPORT
.
227
3.3.1.1
CONCENTRATION
DISTRIBUTION
NEAR
THE
PHASE
INTERFACE
.
228
3.3.2
INFLUENCING
QUANTITIES
OF
THE
MATERIAL
PROPERTIES
.
247
3.4
INFLUENCE
FACTORS
AND
REDUCTION
OF
DEGRADATION
DURING
POLYMER
PROCESSING
.
252
3.4.1
INTRODUCTION
.
252
3.4.2
CHEMICAL
REACTIONS
.
253
3.4.2.1
DAMAGE
THROUGH
THERMAL
DEGRADATION
.
254
3.4.2.2
OXIDATIVE
DEGRADATION
.
256
3.4.2.3
CHEMICAL
DEGRADATION
REACTIONS
VIA
RESIDUAL
WATER
.
258
3.4.2.4
DEGRADATION
VIA
MECHANICAL
STRESS
.
259
3.4.2.5
INFLUENCE
OF
METALS
ON
DEGRADATION
.
259
3.4.3
RELATIONSHIP
BETWEEN
POLYMER
DEGRADATION
AND
PROPERTIES
.
260
3.4.4
REDUCTION
OF
POLYMER
DEGRADATION
DURING
PROCESSING
.
262
3.4.4.1
EXTRUDER
SCREW
DESIGN
OR
PROCESSING
PARAMETERS
.
262
3.4.4.2
CHANGES
OF
MELT
FLOW
BEHAVIOR
VIA
MOLECULAR
WEIGHT
AND
FLOW
MODIFIERS
.
263
5.4.4.3
MINIMIZATION
OF
REACTION
PARTNERS
.
264
3.4.4.4 ADDITIVES
FOR
REDUCTION
OF
POLYMER
DEGRADATION
.
264
3.4.5
SUMMARY
.
266
3.5
CALCULATION
BASIS
FOR
THE
FLOW
IN
WEDGE
SHAPED
SHEAR
GAPS
AND
FLOW
PROPERTIES
OF
FILLED
POLYMER
MELTS
.
268
3.5.1
CONSIDERATION
OF
PSEUDOPLASTIC
FLOW
BEHAVIOR
OF
PLASTIC
MELTS
IN
THE
WEDGE
GAP
FLOW
AND
KEY
NUMBERS
FOR
THE
EVALUATION
OF
THE
DISPERSION
.
268
3.5.1.1
INTRODUCTION
-
DEFORMATION
OF
PLASTIC
MELTS,
SHEAR,
AND
ELONGATION
IN
THE
WEDGE
GAP
FLOW
.
268
3.5.1.2
CALCULATION
OF
THE
WEDGE
GAP
FLOW
FOR
HIGHLY
VISCOUS
FLUIDS
.
271
3.5.1.3
PLASTIC
MELTS
WITH
DIFFERENT
PSEUDOPLASTIC
FLOW
BEHAVIOR
.
274
3.5.1.4
RESULTS
OF
THE
SIMULATION
.
276
3.5.2
MODELING
OF
THE
FLOW
BEHAVIOR
OF
HIGHLY
FILLED
PLASTICS
.
285
3.5.2.1
VISCOSITY
OF
POLYMERS
WITH
DIFFERENT
FILLER
CONTENTS
.
285
3.5.2.2
CARPOW
APPROACH
FOR
THE
VISCOSITY
FUNCTION
OF
HIGHLY
FILLED
POLYMERS
.
288
3.5.2.3
SUMMARY
.
289
4
CONVEYING
BEHAVIOR,
PRESSURE
AND
PERFORMANCE
BEHAVIOR
.
291
4.1
INTRODUCTION
OF
CONVEYING
AND
PRESSURE
BEHAVIOR
OF
HIGHLY
VISCOUS
LIQUIDS
IN
EXTRUDERS
.
291
4.1.1
THROUGHPUT
AND
PRESSURE
BEHAVIOR,
DIMENSIONLESS
KEY
FIGURES
.
291
4.1.1.1
SHEAR
RATE
AND
VISCOSITY
.
291
4.1.1.2
SIMPLE
QUALITATIVE
CONSIDERATION
ON
SIMPLE
PLANE
FLOW
.
293
4.1.1.3
EXTRUDER
KEY
FIGURES
AND
PRESSURE
BASIC
EQUATION
F
OR
EXTRUDERS
.
300
4.2
INTRODUCTION
OF
THE
PERFORMANCE
BEHAVIOR
OF
HIGHLY
VISCOUS
LIQUIDS
IN
EXTRUDERS
.
320
4.2.1
THROUGHPUT
PERFORMANCE
BEHAVIOR
OF
THE
PLANE
FLOW
BETWEEN
TWO
PLATES
.
320
4.2.2
PERFORMANCE
KEY
FIGURE
FOR
AN
ANNULAR
GAP
.
321
4.2.3
BASIC
EQUATION
OF
THE
PERFORMANCE
CHARACTERISTIC
OF
EXTRUDERS
.
323
4.3
DISSIPATION,
PUMP
EFFICIENCY
DEGREE,
TEMPERATURE
INCREASE,
AND
HEAT
TRANSFER
.
326
4.3.1
DISSIPATION
.
326
4.3.2
PUMP
EFFICIENCY
DEGREE
.
326
4.3.3
TEMPERATURE
INCREASE
.
329
4.3.4
HEAT
TRANSFER
.
337
4.4
PROSPECT
TO
THE
SECTIONS
4.1,4.2,
AND
4.3
.
339
4.5
PRESSURE
GENERATION
AND
ENERGY
INPUT
IN
THE
MELT
.
341
4.5.1
OPERATING
CONDITIONS
OF
CONVEYING
SCREW
ELEMENTS
.
341
4.5.2
ILLUSTRATION
OF
DIMENSIONLESS
GROUPS
.
343
4.5.3
CALCULATION
OF
THE
BACK-PRESSURE
LENGTH
.
349
4.5.4
EFFICIENCY
DURING
PRESSURE
GENERATION
.
350
4.5.5
EXAMPLE
FOR
THE
DESIGN
OF
A
PRESSURE
BUILD-UP
ZONE
.
352
4.5.6
PRESSURE
AND
ENERGY
BEHAVIOR
WITH
SHEAR
THINNING
.
353
4.6
TASKS
REGARDING
THE
POWER
INPUT
AND
THE
BACK-PRESSURE
LENGTH
.
360
4.6.1
TASK:
INFLUENCE
OF
THE
FLIGHT
PITCH
.
360
4.6.2
TASK:
PARTIAL
FILLING
.
362
4.6.3
TASK:
DESIGN
OF
A
PRESSURE
BUILD-UP
ZONE
WITH
UNIFORM
PITCH
AS
WELL
AS
FULLY
AND
PARTIALLY
FILLED
AREAS
.
363
4.6.4
TASK:
DESIGN
OF
THE
PRESSURE
BUILD-UP
ZONE
WITH
VARIOUS
ELEMENTS
WITH
40
MM
AND
60
MM
PITCH
COMBINED
.
367
4.6.5
TASK:
IMPACT
OF
SHEAR
THINNING
EFFECTS
.
368
4.7
COMPUTATIONAL
FLUID
DYNAMICS
.
370
4.7.1
INTRODUCTION
TO
COMPUTATIONAL
FLUID
DYNAMICS
.
370
4.7.2
FULLY
FILLED
SCREW
SECTIONS
.
374
4.7.2.1
EXAMPLE
1
.
374
4.7.2.2
EXAMPLE
2
.
391
4.7.2.3
CONCLUSION
AND
OUTLOOK
.
393
4.7.3
PARTLY
FILLED
SCREW
SECTIONS
.
397
INDEX
.
405 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Akdeniz, Merve |
author_GND | (DE-588)1218188995 |
author_facet | Akdeniz, Merve |
author_role | aut |
author_sort | Akdeniz, Merve |
author_variant | m a ma |
building | Verbundindex |
bvnumber | BV046910045 |
collection | ebook |
contents | enthält außerdem 4 Sonderabdr. aus verschiedenen Zeitschr. |
ctrlnum | (OCoLC)1197718753 (DE-599)BVBBV046910045 |
format | Thesis Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01918nmm a2200517 c 4500</leader><controlfield tag="001">BV046910045</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="006">a m||| 00||| </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200923s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">urn:nbn:de:kobv:188-refubium-28017-0</subfield><subfield code="2">urn</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1197718753</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046910045</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-578</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">610</subfield><subfield code="2">FUB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Akdeniz, Merve</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1218188995</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Characteristics of ageing skin</subfield><subfield code="c">vorgelegt von Merve Akdeniz</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (71 Blätter)</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">Charité - Universitätsmedizin Berlin</subfield><subfield code="d">2020</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">enthält außerdem 4 Sonderabdr. aus verschiedenen Zeitschr.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tewl</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">non melanoma skin cancer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">skin moisture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dehydration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">skin hydration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">actinic keratosis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transepidermal water loss</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">corneometer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tewameter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">basal cell carcinoma</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cutaneous squamous cell carcinoma</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">water loss dehydration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">serum osmolality</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="w">(DE-604)BV046910052</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://refubium.fu-berlin.de/handle/fub188/28017</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032319525&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ebook</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032319525</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV046910045 |
illustrated | Not Illustrated |
index_date | 2024-07-03T15:27:55Z |
indexdate | 2024-07-10T08:57:14Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032319525 |
oclc_num | 1197718753 |
open_access_boolean | 1 |
owner | DE-578 |
owner_facet | DE-578 |
physical | 1 Online-Ressource (71 Blätter) Diagramme |
psigel | ebook |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
record_format | marc |
spelling | Akdeniz, Merve Verfasser (DE-588)1218188995 aut Characteristics of ageing skin vorgelegt von Merve Akdeniz Berlin 2020 1 Online-Ressource (71 Blätter) Diagramme txt rdacontent c rdamedia cr rdacarrier Dissertation Charité - Universitätsmedizin Berlin 2020 enthält außerdem 4 Sonderabdr. aus verschiedenen Zeitschr. tewl non melanoma skin cancer skin moisture dehydration skin hydration actinic keratosis Transepidermal water loss corneometer Tewameter basal cell carcinoma cutaneous squamous cell carcinoma water loss dehydration serum osmolality (DE-588)4113937-9 Hochschulschrift gnd-content Erscheint auch als Druck-Ausgabe (DE-604)BV046910052 https://refubium.fu-berlin.de/handle/fub188/28017 Resolving-System kostenfrei Volltext DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032319525&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Akdeniz, Merve Characteristics of ageing skin enthält außerdem 4 Sonderabdr. aus verschiedenen Zeitschr. tewl non melanoma skin cancer skin moisture dehydration skin hydration actinic keratosis Transepidermal water loss corneometer Tewameter basal cell carcinoma cutaneous squamous cell carcinoma water loss dehydration serum osmolality |
subject_GND | (DE-588)4113937-9 |
title | Characteristics of ageing skin |
title_auth | Characteristics of ageing skin |
title_exact_search | Characteristics of ageing skin |
title_exact_search_txtP | Characteristics of ageing skin |
title_full | Characteristics of ageing skin vorgelegt von Merve Akdeniz |
title_fullStr | Characteristics of ageing skin vorgelegt von Merve Akdeniz |
title_full_unstemmed | Characteristics of ageing skin vorgelegt von Merve Akdeniz |
title_short | Characteristics of ageing skin |
title_sort | characteristics of ageing skin |
topic | tewl non melanoma skin cancer skin moisture dehydration skin hydration actinic keratosis Transepidermal water loss corneometer Tewameter basal cell carcinoma cutaneous squamous cell carcinoma water loss dehydration serum osmolality |
topic_facet | tewl non melanoma skin cancer skin moisture dehydration skin hydration actinic keratosis Transepidermal water loss corneometer Tewameter basal cell carcinoma cutaneous squamous cell carcinoma water loss dehydration serum osmolality Hochschulschrift |
url | https://refubium.fu-berlin.de/handle/fub188/28017 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032319525&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT akdenizmerve characteristicsofageingskin |