Number theory revealed: an introduction
Gauss's Disquisitiones Arithmeticae -- Preliminary chapter on induction -- The Euclidean algorithm -- Congruences -- The basic algebra of number theory -- Multiplicative functions -- The distribution of prime numbers -- Diophantine problems -- Power residues -- Quadratic residues -- Quadratic e...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Providence, Rhode Island
American Mathematical Society
[2019]
|
Schlagworte: |
Number theory
> Elementary number theory {For analogues in number fields, see 11R04}
> Multiplicative structure; Euclidean algorithm; greatest common divisors
Number theory
> Elementary number theory {For analogues in number fields, see 11R04}
> Congruences; primitive roots; residue systems
Number theory
> Elementary number theory {For analogues in number fields, see 11R04}
> Power residues, reciprocity
Number theory
> Elementary number theory {For analogues in number fields, see 11R04}
> Factorization; primality
|
Zusammenfassung: | Gauss's Disquisitiones Arithmeticae -- Preliminary chapter on induction -- The Euclidean algorithm -- Congruences -- The basic algebra of number theory -- Multiplicative functions -- The distribution of prime numbers -- Diophantine problems -- Power residues -- Quadratic residues -- Quadratic equations -- Square roots and factoring -- Rational approximations to real numbers -- Binary quadratic forms |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | xxiv, 264 Seiten Illustrationen |
ISBN: | 9781470441579 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV046904241 | ||
003 | DE-604 | ||
005 | 20201104 | ||
007 | t | ||
008 | 200918s2019 xxua||| |||| 00||| eng d | ||
020 | |a 9781470441579 |c hardcover |9 978-1-4704-4157-9 | ||
035 | |a (OCoLC)1130294482 | ||
035 | |a (DE-599)KXP1685097480 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c XD-US | ||
049 | |a DE-19 | ||
050 | 0 | |a QA241 | |
082 | 0 | |a 512.7 | |
084 | |a SK 180 |0 (DE-625)143222: |2 rvk | ||
100 | 1 | |a Granville, Andrew |d 1962- |e Verfasser |0 (DE-588)1197159819 |4 aut | |
245 | 1 | 0 | |a Number theory revealed |b an introduction |c Andrew Granville |
264 | 1 | |a Providence, Rhode Island |b American Mathematical Society |c [2019] | |
300 | |a xxiv, 264 Seiten |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
520 | 3 | |a Gauss's Disquisitiones Arithmeticae -- Preliminary chapter on induction -- The Euclidean algorithm -- Congruences -- The basic algebra of number theory -- Multiplicative functions -- The distribution of prime numbers -- Diophantine problems -- Power residues -- Quadratic residues -- Quadratic equations -- Square roots and factoring -- Rational approximations to real numbers -- Binary quadratic forms | |
653 | 0 | |a Number theory | |
653 | 0 | |a Number theory -- Instructional exposition (textbooks, tutorial papers, etc.) | |
653 | 0 | |a Number theory -- Elementary number theory {For analogues in number fields, see 11R04} -- Multiplicative structure; Euclidean algorithm; greatest common divisors | |
653 | 0 | |a Number theory -- Elementary number theory {For analogues in number fields, see 11R04} -- Congruences; primitive roots; residue systems | |
653 | 0 | |a Number theory -- Elementary number theory {For analogues in number fields, see 11R04} -- Power residues, reciprocity | |
653 | 0 | |a Number theory -- Elementary number theory {For analogues in number fields, see 11R04} -- Primes | |
653 | 0 | |a Number theory -- Elementary number theory {For analogues in number fields, see 11R04} -- Factorization; primality | |
653 | 0 | |a Number theory -- Sequences and sets -- Fibonacci and Lucas numbers and polynomials and generalizations | |
653 | 0 | |a Number theory -- Diophantine equations -- Linear equations | |
653 | 0 | |a Number theory -- Diophantine equations -- The Frobenius problem | |
776 | 0 | |z 9781470454234 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032313831 |
Datensatz im Suchindex
_version_ | 1804181779006881792 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Granville, Andrew 1962- |
author_GND | (DE-588)1197159819 |
author_facet | Granville, Andrew 1962- |
author_role | aut |
author_sort | Granville, Andrew 1962- |
author_variant | a g ag |
building | Verbundindex |
bvnumber | BV046904241 |
callnumber-first | Q - Science |
callnumber-label | QA241 |
callnumber-raw | QA241 |
callnumber-search | QA241 |
callnumber-sort | QA 3241 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 180 |
ctrlnum | (OCoLC)1130294482 (DE-599)KXP1685097480 |
dewey-full | 512.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.7 |
dewey-search | 512.7 |
dewey-sort | 3512.7 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02523nam a2200457 c 4500</leader><controlfield tag="001">BV046904241</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20201104 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">200918s2019 xxua||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781470441579</subfield><subfield code="c">hardcover</subfield><subfield code="9">978-1-4704-4157-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1130294482</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1685097480</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA241</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.7</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Granville, Andrew</subfield><subfield code="d">1962-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1197159819</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Number theory revealed</subfield><subfield code="b">an introduction</subfield><subfield code="c">Andrew Granville</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, Rhode Island</subfield><subfield code="b">American Mathematical Society</subfield><subfield code="c">[2019]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxiv, 264 Seiten</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Gauss's Disquisitiones Arithmeticae -- Preliminary chapter on induction -- The Euclidean algorithm -- Congruences -- The basic algebra of number theory -- Multiplicative functions -- The distribution of prime numbers -- Diophantine problems -- Power residues -- Quadratic residues -- Quadratic equations -- Square roots and factoring -- Rational approximations to real numbers -- Binary quadratic forms</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Number theory</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Number theory -- Instructional exposition (textbooks, tutorial papers, etc.)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Number theory -- Elementary number theory {For analogues in number fields, see 11R04} -- Multiplicative structure; Euclidean algorithm; greatest common divisors</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Number theory -- Elementary number theory {For analogues in number fields, see 11R04} -- Congruences; primitive roots; residue systems</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Number theory -- Elementary number theory {For analogues in number fields, see 11R04} -- Power residues, reciprocity</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Number theory -- Elementary number theory {For analogues in number fields, see 11R04} -- Primes</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Number theory -- Elementary number theory {For analogues in number fields, see 11R04} -- Factorization; primality</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Number theory -- Sequences and sets -- Fibonacci and Lucas numbers and polynomials and generalizations</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Number theory -- Diophantine equations -- Linear equations</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Number theory -- Diophantine equations -- The Frobenius problem</subfield></datafield><datafield tag="776" ind1="0" ind2=" "><subfield code="z">9781470454234</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032313831</subfield></datafield></record></collection> |
id | DE-604.BV046904241 |
illustrated | Illustrated |
index_date | 2024-07-03T15:25:44Z |
indexdate | 2024-07-10T08:57:04Z |
institution | BVB |
isbn | 9781470441579 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032313831 |
oclc_num | 1130294482 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM |
owner_facet | DE-19 DE-BY-UBM |
physical | xxiv, 264 Seiten Illustrationen |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | American Mathematical Society |
record_format | marc |
spelling | Granville, Andrew 1962- Verfasser (DE-588)1197159819 aut Number theory revealed an introduction Andrew Granville Providence, Rhode Island American Mathematical Society [2019] xxiv, 264 Seiten Illustrationen txt rdacontent n rdamedia nc rdacarrier Includes bibliographical references and index Gauss's Disquisitiones Arithmeticae -- Preliminary chapter on induction -- The Euclidean algorithm -- Congruences -- The basic algebra of number theory -- Multiplicative functions -- The distribution of prime numbers -- Diophantine problems -- Power residues -- Quadratic residues -- Quadratic equations -- Square roots and factoring -- Rational approximations to real numbers -- Binary quadratic forms Number theory Number theory -- Instructional exposition (textbooks, tutorial papers, etc.) Number theory -- Elementary number theory {For analogues in number fields, see 11R04} -- Multiplicative structure; Euclidean algorithm; greatest common divisors Number theory -- Elementary number theory {For analogues in number fields, see 11R04} -- Congruences; primitive roots; residue systems Number theory -- Elementary number theory {For analogues in number fields, see 11R04} -- Power residues, reciprocity Number theory -- Elementary number theory {For analogues in number fields, see 11R04} -- Primes Number theory -- Elementary number theory {For analogues in number fields, see 11R04} -- Factorization; primality Number theory -- Sequences and sets -- Fibonacci and Lucas numbers and polynomials and generalizations Number theory -- Diophantine equations -- Linear equations Number theory -- Diophantine equations -- The Frobenius problem 9781470454234 |
spellingShingle | Granville, Andrew 1962- Number theory revealed an introduction |
title | Number theory revealed an introduction |
title_auth | Number theory revealed an introduction |
title_exact_search | Number theory revealed an introduction |
title_exact_search_txtP | Number theory revealed an introduction |
title_full | Number theory revealed an introduction Andrew Granville |
title_fullStr | Number theory revealed an introduction Andrew Granville |
title_full_unstemmed | Number theory revealed an introduction Andrew Granville |
title_short | Number theory revealed |
title_sort | number theory revealed an introduction |
title_sub | an introduction |
work_keys_str_mv | AT granvilleandrew numbertheoryrevealedanintroduction |