Mathematical models of convection:
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston
De Gruyter
[2020]
|
Ausgabe: | 2nd edition |
Schriftenreihe: | De Gruyter Studies in Mathematical Physics
Volume 5 |
Schlagworte: | |
Online-Zugang: | Unbekannt zbMATH Inhaltsverzeichnis |
Beschreibung: | Enthält Literaturverzeichnis (Seite 401-412) und Index |
Beschreibung: | xiv, 414 Seiten Illustrationen, Diagramme 24 cm x 17 cm |
ISBN: | 9783110653786 3110653788 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV046889004 | ||
003 | DE-604 | ||
005 | 20200908 | ||
007 | t | ||
008 | 200908s2020 gw a||| |||| 00||| eng d | ||
015 | |a 20,N22 |2 dnb | ||
016 | 7 | |a 1210656736 |2 DE-101 | |
020 | |a 9783110653786 |c : EUR 149.95 (DE) (freier Preis), EUR 149.95 (AT) (freier Preis) |9 978-3-11-065378-6 | ||
020 | |a 3110653788 |9 3-11-065378-8 | ||
024 | 7 | |a 10.1515/9783110655469 |2 doi | |
024 | 3 | |a 9783110653786 | |
035 | |a (OCoLC)1195950276 | ||
035 | |a (DE-599)DNB1210656736 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-19 | ||
084 | |a UF 4000 |0 (DE-625)145577: |2 rvk | ||
100 | 1 | |a Andreev, Viktor Konstantinovič |e Verfasser |0 (DE-588)1027094473 |4 aut | |
245 | 1 | 0 | |a Mathematical models of convection |c Victor K. Andreev, Yuri A. Gaponenko, Olga N. Goncharova, and Vladislav Pukhnachev |
250 | |a 2nd edition | ||
264 | 1 | |a Berlin ; Boston |b De Gruyter |c [2020] | |
300 | |a xiv, 414 Seiten |b Illustrationen, Diagramme |c 24 cm x 17 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a De Gruyter Studies in Mathematical Physics |v Volume 5 | |
500 | |a Enthält Literaturverzeichnis (Seite 401-412) und Index | ||
650 | 0 | 7 | |a Mathematisches Modell |0 (DE-588)4114528-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Konvektion |0 (DE-588)4117572-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Konvektion |0 (DE-588)4117572-4 |D s |
689 | 0 | 1 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Gaponenko, Yuri |e Verfasser |0 (DE-588)1216965129 |4 aut | |
700 | 1 | |a Goncharova, Olga N. |e Verfasser |0 (DE-588)1216965269 |4 aut | |
700 | 1 | |a Puchnačev, Vladislav V. |d 20. Jht. |e Verfasser |0 (DE-588)1089235054 |4 aut | |
710 | 2 | |a Walter de Gruyter GmbH & Co. KG |0 (DE-588)10095502-2 |4 pbl | |
776 | 0 | |z 9783110653946 |c ePub | |
776 | 0 | |z 9783110655469 |c PDF | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-3-11-065394-6 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 978-3-11-065546-9 |
830 | 0 | |a De Gruyter Studies in Mathematical Physics |v Volume 5 |w (DE-604)BV040141722 |9 5,2 | |
856 | 4 | 2 | |m X:MVB |u https://www.degruyter.com/books/9783110653786 |v 2020-05-27 |x Verlag |3 Unbekannt |
856 | 4 | 2 | |u https://www.zbmath.org/?q=an%3A07204917 |y zbMATH |z Review |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032298870&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-032298870 |
Datensatz im Suchindex
_version_ | 1804181753076645888 |
---|---|
adam_text | CONTENTS
PREFACE
*
IX
PREFACE
TO
THE
SECOND
EDITION
*
XV
1
EQUATIONS
OF
FLUID
MOTION
*
1
1.1
BASIC
HYPOTHESES
OF
CONTINUUM
*
1
1.2
TWO
METHODS
FOR
THE
CONTINUUM
DESCRIPTION.
TRANSLATION
FORMULA
*
4
1.3
INTEGRAL
CONSERVATION
LAWS.
EQUATIONS
OF
CONTINUOUS
MOTION
*
7
1.4
THERMODYNAMICS
ASPECTS
*
13
1.5
CLASSICAL
MODELS
OF
LIQUIDS
AND
GASES
*
16
2
CONDITIONS
ON
THE
INTERFACE
BETWEEN
FLUIDS
AND
ON
SOLID
WALLS
*
25
2.1
NOTION
OF
THE
INTERFACE
*
25
2.2
KINEMATIC
CONDITION
*
26
2.3
DYNAMIC
CONDITION
*
26
2.4
ELEMENTS
OF
THERMODYNAMICS
OF
THE
INTERFACE
*
32
2.5
CONDITIONS
OF
CONTINUITY
-----34
2.6
ENERGY
TRANSFER
ACROSS
THE
INTERFACE
*
36
2.7
FREE
SURFACES
-----40
2.8
ADDITIONAL
CONDITIONS
-----
42
3
MODELS
OF
CONVECTION
OF
AN
ISOTHERMALLY
INCOMPRESSIBLE
FLUID
*
45
3.1
ISOTHERMALLY
INCOMPRESSIBLE
FLUID
*
45
3.2
EQUATIONS
OF
THERMAL
CONVECTION
OF
AN
ISOTHERMALLY
INCOMPRESSIBLE
FLUID
-----
47
3.3
MODEL
OF
LINEAR
THERMAL
EXPANSION
*
48
3.4
SOME
SUBMODELS
-----
50
3.5
ON
BOUNDARY
CONDITIONS
-----
51
3.6
TWO
PROBLEMS
OF
CONVECTION
*
53
4
HIERARCHY
OF
CONVECTION
MODELS
IN
CLOSED
VOLUMES
*
61
4.1
INITIAL
RELATIONS
*
61
4.2
SIMILARITY
CRITERIA
-----63
4.3
TRANSITION
TO
DIMENSIONAL
VARIABLES
*
65
4.4
EXPANSION
IN
THE
SMALL
PARAMETER
*
68
4.5
EQUATIONS
OF
MICROCONVECTION
OF
AN
ISOTHERMALLY
INCOMPRESSIBLE
FLUID
*
71
4.6
OBERBECK-BOUSSINESQ
EQUATIONS
*
74
4.7
LINEAR
MODEL
OF
THE
TRANSITIONAL
PROCESS
*
75
4.8
SOME
CONCLUSIONS
-----
78
VI
CONTENTS
4.9
CONVECTION
OF
NONISOTHERMAL
LIQUIDS
AND
GASES
UNDER
MICROGRAVITY
CONDITIONS
*
81
4.10
CONVECTION
OF
A
THERMALLY
INHOMOGENEOUS
WEAKLY
COMPRESSIBLE
FLUID
*
88
4.11
EXACT
SOLUTIONS
IN
AN
INFINITE
BAND
*
92
4.12
ANALYSIS
OF
WELL-POSEDNESS
OF
THE
INITIAL-BOUNDARY
PROBLEM
FOR
EQUATIONS
OF
CONVECTION
OF
A
WEAKLY
COMPRESSIBLE
FLUID
*
104
5
INVARIANT
SUBMODELS
OF
MICROCONVECTION
EQUATIONS
*
113
5.1
BASIC
MODEL
AND
ITS
GROUP
PROPERTIES
*
113
5.2
OPTIMAL
SUBSYSTEMS
OF
THE
SUBALGEBRAS
AND
9
2
,
FACTOR-SYSTEMS,
AND
SOME
SOLUTIONS
*
116
5.3
ON
ONE
STEADY
SOLUTION
OF
MICROCONVECTION
EQUATIONS
IN
A
VERTICAL
LAYER
*
124
5.4
SOLVABILITY
OF
A
NONSTANDARD
BOUNDARY-VALUE
PROBLEM
*
134
5.5
UNSTEADY
SOLUTION
OF
MICROCONVECTION
EQUATIONS
IN
AN
INFINITE
BAND
*
140
5.6
INVARIANT
SOLUTIONS
OF
MICROCONVECTION
EQUATIONS
THAT
DESCRIBE
THE
MOTION
WITH
AN
INTERFACE
*
147
6
GROUP
PROPERTIES
OF
EQUATIONS
OF
THERMODIFFUSION
MOTION
*
153
6.1
LIE
GROUP
OF
THERMODIFFUSION
EQUATIONS
*
153
6.2
GROUP
PROPERTIES
OF
TWO-DIMENSIONAL
EQUATIONS
*
169
6.3
INVARIANT
SUBMODELS
AND
EXACT
SOLUTIONS
OF
THERMODIFFUSION
EQUATIONS
*
174
7
STABILITY
OF
EQUILIBRIUM
STATES
IN
THE
OBERBECK-BOUSSINESQ
MODEL
*
193
7.1
CONVECTIVE
INSTABILITY
OF
A
HORIZONTAL
LAYER
WITH
OSCILLATIONS
OF
TEMPERATURE
ON
THE
FREE
BOUNDARY
*
193
7.2
INSTABILITY
OF
A
LIQUID
LAYERS
WITH
AN
INTERFACE
*
201
7.3
CONVECTION
IN
A
ROTATING
FLUID
LAYER
UNDER
MICROGRAVITY
CONDITIONS
*
211
8
SMALL
PERTURBATIONS
AND
STABILITY
OF
PLANE
LAYERS
IN
THE
MICROCONVECTION
MODEL
*
221
8.1
EQUATIONS
OF
SMALL
PERTURBATIONS
*
221
8.2
STABILITY
OF
THE
EQUILIBRIUM
STATE
OF
A
PLANE
LAYER
WITH
SOLID
WALLS
*
225
8.3
EMERGENCE
OF
MICROCONVECTION
IN
A
PLANE
LAYER
WITH
A
FREE
BOUNDARY
*
235
8.4
STABILITY
OF
A
STEADY
FLOW
IN
A
VERTICAL
LAYER
*
245
CONTENTS
*
VII
BIBLIOGRAPHY
*
401
9
NUMERICAL
SIMULATION
OF
CONVECTIVE
FLOWS
UNDER
MICROGRAVITY
CONDITIONS
-----
257
9.1
9.2
NUMERICAL
METHODS
USED
FOR
CALCULATIONS
*
257
NUMERICAL
STUDY
OF
UNSTEADY
MICROCONVECTION
IN
CANONICAL
DOMAINS
WITH
SOLID
BOUNDARIES
*
268
9.3
NUMERICAL
STUDY
OF
STEADY
MICROCONVECTION
IN
DOMAINS
WITH
FREE
BOUNDARIES
-----
284
9.4
9.5
STUDY
OF
CONVECTION
INDUCED
BY
VOLUME
EXPANSION
*
300
CONVECTION
IN
MISCIBLE
FLUIDS
*
320
10
10.1
CONVECTIVE
FLOWS
IN
TUBES
AND
LAYERS
*
341
GROUP-THEORETICAL
NATURE
OF
THE
BIRIKH
SOLUTION
AND
ITS
GENERALIZATIONS
*
341
10.2
AN
AXIAL
CONVECTIVE
FLOW
IN
A
ROTATING
TUBE
WITH
A
LONGITUDINAL
TEMPERATURE
GRADIENT
*
349
10.3
10.3.1
10.3.2
10.3.3
10.3.4
10.3.5
10.3.6
10.3.7
10.3.8
10.4
10.5
UNSTEADY
ANALOGS
OF
THE
BIRIKH
SOLUTIONS
*
357
INTRODUCTION
*
357
PLANE
MOTION
IN
A
HORIZONTAL
BAND
*
358
LAYERED
MOTION
OF
IMMISCIBLE
FLUIDS
*
361
UNSTEADY
AXIAL
CONVECTION
IN
A
ROTATING
TUBE
*
363
MOTION
OF
IMMISCIBLE
FLUIDS
IN
A
ROTATING
TUBE
-----
364
THREE-DIMENSIONAL
ANALOGS
OF
THE
BIRIKH
SOLUTION
*
366
ON
THE
OSTROUMOV
SOLUTIONS
*
369
CONCLUDING
REMARKS
*
370
MODEL
OF
VISCOUS
LAYER
DEFORMATION
BY
THERMOCAPILLARY
FORCES
*
371
CONVECTIVE
FLOW
IN
A
HORIZONTAL
CHANNEL
WITH
NON-NEWTONIAN
SURFACE
RHEOLOGY
UNDER
TIME-DEPENDENT
LONGITUDINAL
TEMPERATURE
GRADIENT
*
394
10.5.1
10.5.2
10.5.3
FORMULATION
OF
THE
PROBLEM
*
394
LIMITING
STEADY
FLOW
*
397
UNSTEADY
CONVECTION
*
398
INDEX
*
413
|
adam_txt |
CONTENTS
PREFACE
*
IX
PREFACE
TO
THE
SECOND
EDITION
*
XV
1
EQUATIONS
OF
FLUID
MOTION
*
1
1.1
BASIC
HYPOTHESES
OF
CONTINUUM
*
1
1.2
TWO
METHODS
FOR
THE
CONTINUUM
DESCRIPTION.
TRANSLATION
FORMULA
*
4
1.3
INTEGRAL
CONSERVATION
LAWS.
EQUATIONS
OF
CONTINUOUS
MOTION
*
7
1.4
THERMODYNAMICS
ASPECTS
*
13
1.5
CLASSICAL
MODELS
OF
LIQUIDS
AND
GASES
*
16
2
CONDITIONS
ON
THE
INTERFACE
BETWEEN
FLUIDS
AND
ON
SOLID
WALLS
*
25
2.1
NOTION
OF
THE
INTERFACE
*
25
2.2
KINEMATIC
CONDITION
*
26
2.3
DYNAMIC
CONDITION
*
26
2.4
ELEMENTS
OF
THERMODYNAMICS
OF
THE
INTERFACE
*
32
2.5
CONDITIONS
OF
CONTINUITY
-----34
2.6
ENERGY
TRANSFER
ACROSS
THE
INTERFACE
*
36
2.7
FREE
SURFACES
-----40
2.8
ADDITIONAL
CONDITIONS
-----
42
3
MODELS
OF
CONVECTION
OF
AN
ISOTHERMALLY
INCOMPRESSIBLE
FLUID
*
45
3.1
ISOTHERMALLY
INCOMPRESSIBLE
FLUID
*
45
3.2
EQUATIONS
OF
THERMAL
CONVECTION
OF
AN
ISOTHERMALLY
INCOMPRESSIBLE
FLUID
-----
47
3.3
MODEL
OF
LINEAR
THERMAL
EXPANSION
*
48
3.4
SOME
SUBMODELS
-----
50
3.5
ON
BOUNDARY
CONDITIONS
-----
51
3.6
TWO
PROBLEMS
OF
CONVECTION
*
53
4
HIERARCHY
OF
CONVECTION
MODELS
IN
CLOSED
VOLUMES
*
61
4.1
INITIAL
RELATIONS
*
61
4.2
SIMILARITY
CRITERIA
-----63
4.3
TRANSITION
TO
DIMENSIONAL
VARIABLES
*
65
4.4
EXPANSION
IN
THE
SMALL
PARAMETER
*
68
4.5
EQUATIONS
OF
MICROCONVECTION
OF
AN
ISOTHERMALLY
INCOMPRESSIBLE
FLUID
*
71
4.6
OBERBECK-BOUSSINESQ
EQUATIONS
*
74
4.7
LINEAR
MODEL
OF
THE
TRANSITIONAL
PROCESS
*
75
4.8
SOME
CONCLUSIONS
-----
78
VI
CONTENTS
4.9
CONVECTION
OF
NONISOTHERMAL
LIQUIDS
AND
GASES
UNDER
MICROGRAVITY
CONDITIONS
*
81
4.10
CONVECTION
OF
A
THERMALLY
INHOMOGENEOUS
WEAKLY
COMPRESSIBLE
FLUID
*
88
4.11
EXACT
SOLUTIONS
IN
AN
INFINITE
BAND
*
92
4.12
ANALYSIS
OF
WELL-POSEDNESS
OF
THE
INITIAL-BOUNDARY
PROBLEM
FOR
EQUATIONS
OF
CONVECTION
OF
A
WEAKLY
COMPRESSIBLE
FLUID
*
104
5
INVARIANT
SUBMODELS
OF
MICROCONVECTION
EQUATIONS
*
113
5.1
BASIC
MODEL
AND
ITS
GROUP
PROPERTIES
*
113
5.2
OPTIMAL
SUBSYSTEMS
OF
THE
SUBALGEBRAS
AND
9
2
,
FACTOR-SYSTEMS,
AND
SOME
SOLUTIONS
*
116
5.3
ON
ONE
STEADY
SOLUTION
OF
MICROCONVECTION
EQUATIONS
IN
A
VERTICAL
LAYER
*
124
5.4
SOLVABILITY
OF
A
NONSTANDARD
BOUNDARY-VALUE
PROBLEM
*
134
5.5
UNSTEADY
SOLUTION
OF
MICROCONVECTION
EQUATIONS
IN
AN
INFINITE
BAND
*
140
5.6
INVARIANT
SOLUTIONS
OF
MICROCONVECTION
EQUATIONS
THAT
DESCRIBE
THE
MOTION
WITH
AN
INTERFACE
*
147
6
GROUP
PROPERTIES
OF
EQUATIONS
OF
THERMODIFFUSION
MOTION
*
153
6.1
LIE
GROUP
OF
THERMODIFFUSION
EQUATIONS
*
153
6.2
GROUP
PROPERTIES
OF
TWO-DIMENSIONAL
EQUATIONS
*
169
6.3
INVARIANT
SUBMODELS
AND
EXACT
SOLUTIONS
OF
THERMODIFFUSION
EQUATIONS
*
174
7
STABILITY
OF
EQUILIBRIUM
STATES
IN
THE
OBERBECK-BOUSSINESQ
MODEL
*
193
7.1
CONVECTIVE
INSTABILITY
OF
A
HORIZONTAL
LAYER
WITH
OSCILLATIONS
OF
TEMPERATURE
ON
THE
FREE
BOUNDARY
*
193
7.2
INSTABILITY
OF
A
LIQUID
LAYERS
WITH
AN
INTERFACE
*
201
7.3
CONVECTION
IN
A
ROTATING
FLUID
LAYER
UNDER
MICROGRAVITY
CONDITIONS
*
211
8
SMALL
PERTURBATIONS
AND
STABILITY
OF
PLANE
LAYERS
IN
THE
MICROCONVECTION
MODEL
*
221
8.1
EQUATIONS
OF
SMALL
PERTURBATIONS
*
221
8.2
STABILITY
OF
THE
EQUILIBRIUM
STATE
OF
A
PLANE
LAYER
WITH
SOLID
WALLS
*
225
8.3
EMERGENCE
OF
MICROCONVECTION
IN
A
PLANE
LAYER
WITH
A
FREE
BOUNDARY
*
235
8.4
STABILITY
OF
A
STEADY
FLOW
IN
A
VERTICAL
LAYER
*
245
CONTENTS
*
VII
BIBLIOGRAPHY
*
401
9
NUMERICAL
SIMULATION
OF
CONVECTIVE
FLOWS
UNDER
MICROGRAVITY
CONDITIONS
-----
257
9.1
9.2
NUMERICAL
METHODS
USED
FOR
CALCULATIONS
*
257
NUMERICAL
STUDY
OF
UNSTEADY
MICROCONVECTION
IN
CANONICAL
DOMAINS
WITH
SOLID
BOUNDARIES
*
268
9.3
NUMERICAL
STUDY
OF
STEADY
MICROCONVECTION
IN
DOMAINS
WITH
FREE
BOUNDARIES
-----
284
9.4
9.5
STUDY
OF
CONVECTION
INDUCED
BY
VOLUME
EXPANSION
*
300
CONVECTION
IN
MISCIBLE
FLUIDS
*
320
10
10.1
CONVECTIVE
FLOWS
IN
TUBES
AND
LAYERS
*
341
GROUP-THEORETICAL
NATURE
OF
THE
BIRIKH
SOLUTION
AND
ITS
GENERALIZATIONS
*
341
10.2
AN
AXIAL
CONVECTIVE
FLOW
IN
A
ROTATING
TUBE
WITH
A
LONGITUDINAL
TEMPERATURE
GRADIENT
*
349
10.3
10.3.1
10.3.2
10.3.3
10.3.4
10.3.5
10.3.6
10.3.7
10.3.8
10.4
10.5
UNSTEADY
ANALOGS
OF
THE
BIRIKH
SOLUTIONS
*
357
INTRODUCTION
*
357
PLANE
MOTION
IN
A
HORIZONTAL
BAND
*
358
LAYERED
MOTION
OF
IMMISCIBLE
FLUIDS
*
361
UNSTEADY
AXIAL
CONVECTION
IN
A
ROTATING
TUBE
*
363
MOTION
OF
IMMISCIBLE
FLUIDS
IN
A
ROTATING
TUBE
-----
364
THREE-DIMENSIONAL
ANALOGS
OF
THE
BIRIKH
SOLUTION
*
366
ON
THE
OSTROUMOV
SOLUTIONS
*
369
CONCLUDING
REMARKS
*
370
MODEL
OF
VISCOUS
LAYER
DEFORMATION
BY
THERMOCAPILLARY
FORCES
*
371
CONVECTIVE
FLOW
IN
A
HORIZONTAL
CHANNEL
WITH
NON-NEWTONIAN
SURFACE
RHEOLOGY
UNDER
TIME-DEPENDENT
LONGITUDINAL
TEMPERATURE
GRADIENT
*
394
10.5.1
10.5.2
10.5.3
FORMULATION
OF
THE
PROBLEM
*
394
LIMITING
STEADY
FLOW
*
397
UNSTEADY
CONVECTION
*
398
INDEX
*
413 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Andreev, Viktor Konstantinovič Gaponenko, Yuri Goncharova, Olga N. Puchnačev, Vladislav V. 20. Jht |
author_GND | (DE-588)1027094473 (DE-588)1216965129 (DE-588)1216965269 (DE-588)1089235054 |
author_facet | Andreev, Viktor Konstantinovič Gaponenko, Yuri Goncharova, Olga N. Puchnačev, Vladislav V. 20. Jht |
author_role | aut aut aut aut |
author_sort | Andreev, Viktor Konstantinovič |
author_variant | v k a vk vka y g yg o n g on ong v v p vv vvp |
building | Verbundindex |
bvnumber | BV046889004 |
classification_rvk | UF 4000 |
ctrlnum | (OCoLC)1195950276 (DE-599)DNB1210656736 |
discipline | Physik |
discipline_str_mv | Physik |
edition | 2nd edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02636nam a2200577 cb4500</leader><controlfield tag="001">BV046889004</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200908 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">200908s2020 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">20,N22</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1210656736</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110653786</subfield><subfield code="c">: EUR 149.95 (DE) (freier Preis), EUR 149.95 (AT) (freier Preis)</subfield><subfield code="9">978-3-11-065378-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110653788</subfield><subfield code="9">3-11-065378-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110655469</subfield><subfield code="2">doi</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783110653786</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1195950276</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1210656736</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 4000</subfield><subfield code="0">(DE-625)145577:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Andreev, Viktor Konstantinovič</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1027094473</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical models of convection</subfield><subfield code="c">Victor K. Andreev, Yuri A. Gaponenko, Olga N. Goncharova, and Vladislav Pukhnachev</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2nd edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Boston</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiv, 414 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">24 cm x 17 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter Studies in Mathematical Physics</subfield><subfield code="v">Volume 5</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Enthält Literaturverzeichnis (Seite 401-412) und Index</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konvektion</subfield><subfield code="0">(DE-588)4117572-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Konvektion</subfield><subfield code="0">(DE-588)4117572-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gaponenko, Yuri</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1216965129</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Goncharova, Olga N.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1216965269</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Puchnačev, Vladislav V.</subfield><subfield code="d">20. Jht.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1089235054</subfield><subfield code="4">aut</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Walter de Gruyter GmbH & Co. KG</subfield><subfield code="0">(DE-588)10095502-2</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2=" "><subfield code="z">9783110653946</subfield><subfield code="c">ePub</subfield></datafield><datafield tag="776" ind1="0" ind2=" "><subfield code="z">9783110655469</subfield><subfield code="c">PDF</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-3-11-065394-6</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-3-11-065546-9</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter Studies in Mathematical Physics</subfield><subfield code="v">Volume 5</subfield><subfield code="w">(DE-604)BV040141722</subfield><subfield code="9">5,2</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="u">https://www.degruyter.com/books/9783110653786</subfield><subfield code="v">2020-05-27</subfield><subfield code="x">Verlag</subfield><subfield code="3">Unbekannt</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://www.zbmath.org/?q=an%3A07204917</subfield><subfield code="y">zbMATH</subfield><subfield code="z">Review</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032298870&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032298870</subfield></datafield></record></collection> |
id | DE-604.BV046889004 |
illustrated | Illustrated |
index_date | 2024-07-03T15:20:30Z |
indexdate | 2024-07-10T08:56:39Z |
institution | BVB |
institution_GND | (DE-588)10095502-2 |
isbn | 9783110653786 3110653788 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032298870 |
oclc_num | 1195950276 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM |
owner_facet | DE-19 DE-BY-UBM |
physical | xiv, 414 Seiten Illustrationen, Diagramme 24 cm x 17 cm |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | De Gruyter |
record_format | marc |
series | De Gruyter Studies in Mathematical Physics |
series2 | De Gruyter Studies in Mathematical Physics |
spelling | Andreev, Viktor Konstantinovič Verfasser (DE-588)1027094473 aut Mathematical models of convection Victor K. Andreev, Yuri A. Gaponenko, Olga N. Goncharova, and Vladislav Pukhnachev 2nd edition Berlin ; Boston De Gruyter [2020] xiv, 414 Seiten Illustrationen, Diagramme 24 cm x 17 cm txt rdacontent n rdamedia nc rdacarrier De Gruyter Studies in Mathematical Physics Volume 5 Enthält Literaturverzeichnis (Seite 401-412) und Index Mathematisches Modell (DE-588)4114528-8 gnd rswk-swf Konvektion (DE-588)4117572-4 gnd rswk-swf Konvektion (DE-588)4117572-4 s Mathematisches Modell (DE-588)4114528-8 s DE-604 Gaponenko, Yuri Verfasser (DE-588)1216965129 aut Goncharova, Olga N. Verfasser (DE-588)1216965269 aut Puchnačev, Vladislav V. 20. Jht. Verfasser (DE-588)1089235054 aut Walter de Gruyter GmbH & Co. KG (DE-588)10095502-2 pbl 9783110653946 ePub 9783110655469 PDF Erscheint auch als Online-Ausgabe, EPUB 978-3-11-065394-6 Erscheint auch als Online-Ausgabe, PDF 978-3-11-065546-9 De Gruyter Studies in Mathematical Physics Volume 5 (DE-604)BV040141722 5,2 X:MVB https://www.degruyter.com/books/9783110653786 2020-05-27 Verlag Unbekannt https://www.zbmath.org/?q=an%3A07204917 zbMATH Review DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032298870&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Andreev, Viktor Konstantinovič Gaponenko, Yuri Goncharova, Olga N. Puchnačev, Vladislav V. 20. Jht Mathematical models of convection De Gruyter Studies in Mathematical Physics Mathematisches Modell (DE-588)4114528-8 gnd Konvektion (DE-588)4117572-4 gnd |
subject_GND | (DE-588)4114528-8 (DE-588)4117572-4 |
title | Mathematical models of convection |
title_auth | Mathematical models of convection |
title_exact_search | Mathematical models of convection |
title_exact_search_txtP | Mathematical models of convection |
title_full | Mathematical models of convection Victor K. Andreev, Yuri A. Gaponenko, Olga N. Goncharova, and Vladislav Pukhnachev |
title_fullStr | Mathematical models of convection Victor K. Andreev, Yuri A. Gaponenko, Olga N. Goncharova, and Vladislav Pukhnachev |
title_full_unstemmed | Mathematical models of convection Victor K. Andreev, Yuri A. Gaponenko, Olga N. Goncharova, and Vladislav Pukhnachev |
title_short | Mathematical models of convection |
title_sort | mathematical models of convection |
topic | Mathematisches Modell (DE-588)4114528-8 gnd Konvektion (DE-588)4117572-4 gnd |
topic_facet | Mathematisches Modell Konvektion |
url | https://www.degruyter.com/books/9783110653786 https://www.zbmath.org/?q=an%3A07204917 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032298870&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV040141722 |
work_keys_str_mv | AT andreevviktorkonstantinovic mathematicalmodelsofconvection AT gaponenkoyuri mathematicalmodelsofconvection AT goncharovaolgan mathematicalmodelsofconvection AT puchnacevvladislavv mathematicalmodelsofconvection AT walterdegruytergmbhcokg mathematicalmodelsofconvection |