Algebraic geometry: 1 Schemes : with examples and exercises
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English German |
Veröffentlicht: |
Wiesbaden
Vieweg + Teubner
[2020]
|
Ausgabe: | Second edition |
Schriftenreihe: | Springer Studium Mathematik - Master
|
Schlagworte: | |
Online-Zugang: | http://www.springer.com/ Inhaltsverzeichnis |
Beschreibung: | VII, 625 Seiten 15 Illustrationen 24 cm x 16.8 cm |
ISBN: | 9783658307325 3658307323 |
Internformat
MARC
LEADER | 00000nam a2200000 cc4500 | ||
---|---|---|---|
001 | BV046884276 | ||
003 | DE-604 | ||
005 | 20231129 | ||
007 | t | ||
008 | 200904s2020 gw a||| |||| 00||| eng d | ||
015 | |a 20,N22 |2 dnb | ||
016 | 7 | |a 1210659395 |2 DE-101 | |
020 | |a 9783658307325 |c Softcover |9 978-3-658-30732-5 | ||
020 | |a 3658307323 |9 3-658-30732-3 | ||
035 | |a (OCoLC)1220911098 | ||
035 | |a (DE-599)DNB1210659395 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 1 | |a eng |h ger | |
044 | |a gw |c XA-DE-HE | ||
049 | |a DE-19 |a DE-11 | ||
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
084 | |a 510 |2 sdnb | ||
100 | 1 | |a Görtz, Ulrich |d 1973- |e Verfasser |0 (DE-588)122267540 |4 aut | |
245 | 1 | 0 | |a Algebraic geometry |n 1 |p Schemes : with examples and exercises |c Ulrich Görtz, Torsten Wedhorn |
250 | |a Second edition | ||
264 | 1 | |a Wiesbaden |b Vieweg + Teubner |c [2020] | |
300 | |a VII, 625 Seiten |b 15 Illustrationen |c 24 cm x 16.8 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Springer Studium Mathematik - Master | |
653 | |a morphisms | ||
653 | |a vector bundles | ||
653 | |a Algebraic Geometry | ||
653 | |a algebra | ||
653 | |a introduction to schemes | ||
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
700 | 1 | |a Wedhorn, Torsten |d 1970- |e Verfasser |0 (DE-588)120349183 |4 aut | |
710 | 2 | |a Springer Fachmedien Wiesbaden |0 (DE-588)1043386068 |4 pbl | |
773 | 0 | 8 | |w (DE-604)BV035958399 |g 1 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-658-30733-2 |
780 | 0 | 0 | |i Vorangegangen ist |z 978-3-8348-0676-5 |
856 | 4 | 2 | |m X:MVB |u http://www.springer.com/ |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032294219&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-032294219 |
Datensatz im Suchindex
_version_ | 1804181744063086592 |
---|---|
adam_text | CONTENTS
I
NTRODUCTION
1
1
P
REVARIETIES
7
AFFINE
ALGEBRAIC
SETS
................................................................................................
8
AFFINE
ALGEBRAIC
SETS
AS
SPACES
WITH
FUNCTIONS
......................................................
17
PREVARIETIES
...............................................................................................................
23
PROJECTIVE
VARIETIES
...................................................................................................
26
EXERCISES
..................................................................................................................
36
2
S
PECTRUM
OF
A
R
ING
41
SPECTRUM
OF
A
RING
AS
A
TOPOLOGICAL
SPACE
............................................................
42
EXCURSION:
SHEAVES
...................................................................................................
47
SPECTRUM
OF
A
RING
AS
A
LOCALLY
RINGED
SPACE
.........................................................
58
EXERCISES
..................................................................................................................
63
3
S
CHEMES
67
SCHEMES
.....................................................................................................................
67
EXAMPLES
OF
SCHEMES
...............................................................................................
73
BASIC
PROPERTIES
OF
SCHEMES
AND
MORPHISMS
OF
SCHEMES
.....................................
76
PREVARIETIES
AS
SCHEMES
.........................................................................................
80
SUBSCHEMES
AND
IMMERSIONS
...................................................................................
85
EXERCISES
..................................................................................................................
90
4
F
IBER
PRODUCTS
95
SCHEMES
AS
FUNCTORS
...............................................................................................
95
FIBER
PRODUCTS
OF
SCHEMES
......................................................................................
99
BASE
CHANGE,
FIBERS
OF
A
MORPHISM
.....................................................................
107
EXERCISES
..................................................................................................................
117
5
S
CHEMES
OVER
FIELDS
121
SCHEMES
OVER
A
FIELD
WHICH
IS
NOT
ALGEBRAICALLY
CLOSED
........................................
121
DIMENSION
OF
SCHEMES
OVER
A
FIELD
..........................................................................
123
SCHEMES
OVER
FIELDS
AND
EXTENSIONS
OF
THE
BASE
FIELD
...........................................
136
INTERSECTIONS
OF
PLANE
CURVES
...................................................................................
141
EXERCISES
..................................................................................................................
144
6
L
OCAL
P
ROPERTIES
OF
S
CHEMES
148
THE
TANGENT
SPACE
..............................................
149
SMOOTH
MORPHISMS
...........................................................
Z
.....................................
156
REGULAR
SCHEMES
.....................................................................................................
161
NORMAL
SCHEMES
.....................................................................................................
165
EXERCISES
..................................................................................................................
167
VI
CONTENTS
7
Q
UASI
-
COHERENT
MODULES
172
EXCURSION:
^X-MODULES
..........................................................................................
172
QUASI-COHERENT
MODULES
ON
A
SCHEME
....................................................................
184
PROPERTIES
OF
QUASI-COHERENT
MODULES
....................................................................
193
EXERCISES
..................................................................................................................
203
8
R
EPRESENTABLE
F
UNCTORS
208
REPRESENTABLE
FUNCTORS
..........................................................................................
208
THE
EXAMPLE
OF
THE
GRASSMANNIAN
.......................................................................
213
BRAUER-SEVERI
SCHEMES
.............................................................................................
222
EXERCISES
..................................................................................................................
225
9
S
EPARATED
MORPHISMS
230
DIAGONAL
OF
SCHEME
MORPHISMS
AND
SEPARATED
MORPHISMS
...............................
231
RATIONAL
MAPS
AND
FUNCTION
FIELDS
..........................................................................
236
EXERCISES
..................................................................................................................
242
10
F
INITENESS
C
ONDITIONS
244
FINITENESS
CONDITIONS
(NOETHERIAN
CASE)
.................................................................
245
FINITENESS
CONDITIONS
IN
THE
NON-NOETHERIAN
CASE
..............................................
252
SCHEMES
OVER
INDUCTIVE
LIMITS
OF
RINGS
.................................................................
261
CONSTRUCTIBLE
PROPERTIES
..........................................................................................
273
EXERCISES
..................................................................................................................
281
11
V
ECTOR
BUNDLES
288
VECTOR
BUNDLES
AND
LOCALLY
FREE
MODULES
..............................................................
289
FLATTENING
STRATIFICATION
FOR
MODULES
....................................................................
299
DIVISORS
.....................................................................................................................
301
VECTOR
BUNDLES
ON
P
1
................................................................................................
316
EXERCISES
..................................................................................................................
319
12
A
FFINE
AND
PROPER
MORPHISMS
324
AFFINE
MORPHISMS
......................................................................................................
324
FINITE
AND
QUASI-FINITE
MORPHISMS
..........................................................................
328
SERRE
*
S
AND
CHEVALLEY
*
S
CRITERIA
TO
BE
AFFINE
........................................................
338
NORMALIZATION
............................................................................................................
343
PROPER
MORPHISMS
...................................................................................................
347
ZARISKI
*
S
MAIN
THEOREM
.............................................................................................
354
EXERCISES
..................................................................................................................
366
13
P
ROJECTIVE
MORPHISMS
370
PROJECTIVE
SPECTRUM
OF
A
GRADED
ALGEBRA
..............................................................
371
EMBEDDINGS
INTO
PROJECTIVE
SPACE
..........................................................................
389
BLOWING-UP
...............................................................................................................
410
EXERCISES
..................................................................................................................
423
VII
14
F
LAT
MORPHISMS
AND
DIMENSION
428
FLAT
MORPHISMS
.........................................................................................................
428
PROPERTIES
OF
FLAT
MORPHISMS
...................................................................................
436
FAITHFULLY
FLAT
DESCENT
.............................................................................................
446
DIMENSION
AND
FIBERS
OF
MORPHISMS
.......................................................................
470
DIMENSION
AND
REGULARITY
CONDITIONS
....................................................................
479
HILBERT
SCHEMES
.........................................................................................................
484
EXERCISES
..................................................................................................................
487
15
O
NE
-
DIMENSIONAL
SCHEMES
491
MORPHISMS
INTO
AND
FROM
ONE-DIMENSIONAL
SCHEMES
...........................................
491
VALUATIVE
CRITERIA
......................................................................................................
493
CURVES
OVER
FIELDS
......................................................................................................
497
DIVISORS
ON
CURVES
...................................................................................................
501
EXERCISES
..................................................................................................................
506
16
E
XAMPLES
508
DETERMINANTAL
VARIETIES
.........................................................................................
508
CUBIC
SURFACES
AND
A
HILBERT
MODULAR
SURFACE
......................................................
525
CYCLIC
QUOTIENT
SINGULARITIES
...................................................................................
534
ABELIAN
VARIETIES
......................................................................................................
538
EXERCISES
..................................................................................................................
545
A
T
HE
LANGUAGE
OF
CATEGORIES
547
B
C
OMMUTATIVE
A
LGEBRA
554
C
P
ERMANENCE
FOR
PROPERTIES
OF
MORPHISMS
OF
SCHEMES
582
D
R
ELATIONS
BETWEEN
PROPERTIES
OF
MORPHISMS
OF
SCHEMES
585
E
CONSTRUCTIBLE
AND
OPEN
PROPERTIES
587
B
IBLIOGRAPHY
592
D
ETAILED
L
IST
OF
C
ONTENTS
597
I
NDEX
OF
S
YMBOLS
607
I
NDEX
611
|
adam_txt |
CONTENTS
I
NTRODUCTION
1
1
P
REVARIETIES
7
AFFINE
ALGEBRAIC
SETS
.
8
AFFINE
ALGEBRAIC
SETS
AS
SPACES
WITH
FUNCTIONS
.
17
PREVARIETIES
.
23
PROJECTIVE
VARIETIES
.
26
EXERCISES
.
36
2
S
PECTRUM
OF
A
R
ING
41
SPECTRUM
OF
A
RING
AS
A
TOPOLOGICAL
SPACE
.
42
EXCURSION:
SHEAVES
.
47
SPECTRUM
OF
A
RING
AS
A
LOCALLY
RINGED
SPACE
.
58
EXERCISES
.
63
3
S
CHEMES
67
SCHEMES
.
67
EXAMPLES
OF
SCHEMES
.
73
BASIC
PROPERTIES
OF
SCHEMES
AND
MORPHISMS
OF
SCHEMES
.
76
PREVARIETIES
AS
SCHEMES
.
80
SUBSCHEMES
AND
IMMERSIONS
.
85
EXERCISES
.
90
4
F
IBER
PRODUCTS
95
SCHEMES
AS
FUNCTORS
.
95
FIBER
PRODUCTS
OF
SCHEMES
.
99
BASE
CHANGE,
FIBERS
OF
A
MORPHISM
.
107
EXERCISES
.
117
5
S
CHEMES
OVER
FIELDS
121
SCHEMES
OVER
A
FIELD
WHICH
IS
NOT
ALGEBRAICALLY
CLOSED
.
121
DIMENSION
OF
SCHEMES
OVER
A
FIELD
.
123
SCHEMES
OVER
FIELDS
AND
EXTENSIONS
OF
THE
BASE
FIELD
.
136
INTERSECTIONS
OF
PLANE
CURVES
.
141
EXERCISES
.
144
6
L
OCAL
P
ROPERTIES
OF
S
CHEMES
148
THE
TANGENT
SPACE
.
149
SMOOTH
MORPHISMS
.
Z
.
156
REGULAR
SCHEMES
.
161
NORMAL
SCHEMES
.
165
EXERCISES
.
167
VI
CONTENTS
7
Q
UASI
-
COHERENT
MODULES
172
EXCURSION:
^X-MODULES
.
172
QUASI-COHERENT
MODULES
ON
A
SCHEME
.
184
PROPERTIES
OF
QUASI-COHERENT
MODULES
.
193
EXERCISES
.
203
8
R
EPRESENTABLE
F
UNCTORS
208
REPRESENTABLE
FUNCTORS
.
208
THE
EXAMPLE
OF
THE
GRASSMANNIAN
.
213
BRAUER-SEVERI
SCHEMES
.
222
EXERCISES
.
225
9
S
EPARATED
MORPHISMS
230
DIAGONAL
OF
SCHEME
MORPHISMS
AND
SEPARATED
MORPHISMS
.
231
RATIONAL
MAPS
AND
FUNCTION
FIELDS
.
236
EXERCISES
.
242
10
F
INITENESS
C
ONDITIONS
244
FINITENESS
CONDITIONS
(NOETHERIAN
CASE)
.
245
FINITENESS
CONDITIONS
IN
THE
NON-NOETHERIAN
CASE
.
252
SCHEMES
OVER
INDUCTIVE
LIMITS
OF
RINGS
.
261
CONSTRUCTIBLE
PROPERTIES
.
273
EXERCISES
.
281
11
V
ECTOR
BUNDLES
288
VECTOR
BUNDLES
AND
LOCALLY
FREE
MODULES
.
289
FLATTENING
STRATIFICATION
FOR
MODULES
.
299
DIVISORS
.
301
VECTOR
BUNDLES
ON
P
1
.
316
EXERCISES
.
319
12
A
FFINE
AND
PROPER
MORPHISMS
324
AFFINE
MORPHISMS
.
324
FINITE
AND
QUASI-FINITE
MORPHISMS
.
328
SERRE
*
S
AND
CHEVALLEY
*
S
CRITERIA
TO
BE
AFFINE
.
338
NORMALIZATION
.
343
PROPER
MORPHISMS
.
347
ZARISKI
*
S
MAIN
THEOREM
.
354
EXERCISES
.
366
13
P
ROJECTIVE
MORPHISMS
370
PROJECTIVE
SPECTRUM
OF
A
GRADED
ALGEBRA
.
371
EMBEDDINGS
INTO
PROJECTIVE
SPACE
.
389
BLOWING-UP
.
410
EXERCISES
.
423
VII
14
F
LAT
MORPHISMS
AND
DIMENSION
428
FLAT
MORPHISMS
.
428
PROPERTIES
OF
FLAT
MORPHISMS
.
436
FAITHFULLY
FLAT
DESCENT
.
446
DIMENSION
AND
FIBERS
OF
MORPHISMS
.
470
DIMENSION
AND
REGULARITY
CONDITIONS
.
479
HILBERT
SCHEMES
.
484
EXERCISES
.
487
15
O
NE
-
DIMENSIONAL
SCHEMES
491
MORPHISMS
INTO
AND
FROM
ONE-DIMENSIONAL
SCHEMES
.
491
VALUATIVE
CRITERIA
.
493
CURVES
OVER
FIELDS
.
497
DIVISORS
ON
CURVES
.
501
EXERCISES
.
506
16
E
XAMPLES
508
DETERMINANTAL
VARIETIES
.
508
CUBIC
SURFACES
AND
A
HILBERT
MODULAR
SURFACE
.
525
CYCLIC
QUOTIENT
SINGULARITIES
.
534
ABELIAN
VARIETIES
.
538
EXERCISES
.
545
A
T
HE
LANGUAGE
OF
CATEGORIES
547
B
C
OMMUTATIVE
A
LGEBRA
554
C
P
ERMANENCE
FOR
PROPERTIES
OF
MORPHISMS
OF
SCHEMES
582
D
R
ELATIONS
BETWEEN
PROPERTIES
OF
MORPHISMS
OF
SCHEMES
585
E
CONSTRUCTIBLE
AND
OPEN
PROPERTIES
587
B
IBLIOGRAPHY
592
D
ETAILED
L
IST
OF
C
ONTENTS
597
I
NDEX
OF
S
YMBOLS
607
I
NDEX
611 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Görtz, Ulrich 1973- Wedhorn, Torsten 1970- |
author_GND | (DE-588)122267540 (DE-588)120349183 |
author_facet | Görtz, Ulrich 1973- Wedhorn, Torsten 1970- |
author_role | aut aut |
author_sort | Görtz, Ulrich 1973- |
author_variant | u g ug t w tw |
building | Verbundindex |
bvnumber | BV046884276 |
classification_rvk | SK 240 |
ctrlnum | (OCoLC)1220911098 (DE-599)DNB1210659395 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
edition | Second edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01933nam a2200505 cc4500</leader><controlfield tag="001">BV046884276</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20231129 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">200904s2020 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">20,N22</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1210659395</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783658307325</subfield><subfield code="c">Softcover</subfield><subfield code="9">978-3-658-30732-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3658307323</subfield><subfield code="9">3-658-30732-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1220911098</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1210659395</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="1" ind2=" "><subfield code="a">eng</subfield><subfield code="h">ger</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-HE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Görtz, Ulrich</subfield><subfield code="d">1973-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)122267540</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Algebraic geometry</subfield><subfield code="n">1</subfield><subfield code="p">Schemes : with examples and exercises</subfield><subfield code="c">Ulrich Görtz, Torsten Wedhorn</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Wiesbaden</subfield><subfield code="b">Vieweg + Teubner</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VII, 625 Seiten</subfield><subfield code="b">15 Illustrationen</subfield><subfield code="c">24 cm x 16.8 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Studium Mathematik - Master</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">morphisms</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">vector bundles</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">algebra</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">introduction to schemes</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wedhorn, Torsten</subfield><subfield code="d">1970-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)120349183</subfield><subfield code="4">aut</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Springer Fachmedien Wiesbaden</subfield><subfield code="0">(DE-588)1043386068</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV035958399</subfield><subfield code="g">1</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-658-30733-2</subfield></datafield><datafield tag="780" ind1="0" ind2="0"><subfield code="i">Vorangegangen ist</subfield><subfield code="z">978-3-8348-0676-5</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="u">http://www.springer.com/</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032294219&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032294219</subfield></datafield></record></collection> |
genre | (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV046884276 |
illustrated | Illustrated |
index_date | 2024-07-03T15:19:06Z |
indexdate | 2024-07-10T08:56:31Z |
institution | BVB |
institution_GND | (DE-588)1043386068 |
isbn | 9783658307325 3658307323 |
language | English German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032294219 |
oclc_num | 1220911098 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-11 |
owner_facet | DE-19 DE-BY-UBM DE-11 |
physical | VII, 625 Seiten 15 Illustrationen 24 cm x 16.8 cm |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Vieweg + Teubner |
record_format | marc |
series2 | Springer Studium Mathematik - Master |
spelling | Görtz, Ulrich 1973- Verfasser (DE-588)122267540 aut Algebraic geometry 1 Schemes : with examples and exercises Ulrich Görtz, Torsten Wedhorn Second edition Wiesbaden Vieweg + Teubner [2020] VII, 625 Seiten 15 Illustrationen 24 cm x 16.8 cm txt rdacontent n rdamedia nc rdacarrier Springer Studium Mathematik - Master morphisms vector bundles Algebraic Geometry algebra introduction to schemes (DE-588)4123623-3 Lehrbuch gnd-content Wedhorn, Torsten 1970- Verfasser (DE-588)120349183 aut Springer Fachmedien Wiesbaden (DE-588)1043386068 pbl (DE-604)BV035958399 1 Erscheint auch als Online-Ausgabe 978-3-658-30733-2 Vorangegangen ist 978-3-8348-0676-5 X:MVB http://www.springer.com/ DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032294219&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Görtz, Ulrich 1973- Wedhorn, Torsten 1970- Algebraic geometry |
subject_GND | (DE-588)4123623-3 |
title | Algebraic geometry |
title_auth | Algebraic geometry |
title_exact_search | Algebraic geometry |
title_exact_search_txtP | Algebraic geometry |
title_full | Algebraic geometry 1 Schemes : with examples and exercises Ulrich Görtz, Torsten Wedhorn |
title_fullStr | Algebraic geometry 1 Schemes : with examples and exercises Ulrich Görtz, Torsten Wedhorn |
title_full_unstemmed | Algebraic geometry 1 Schemes : with examples and exercises Ulrich Görtz, Torsten Wedhorn |
title_short | Algebraic geometry |
title_sort | algebraic geometry schemes with examples and exercises |
topic_facet | Lehrbuch |
url | http://www.springer.com/ http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032294219&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV035958399 |
work_keys_str_mv | AT gortzulrich algebraicgeometry1 AT wedhorntorsten algebraicgeometry1 AT springerfachmedienwiesbaden algebraicgeometry1 |