Guide to intelligent data science: how to intelligently make use of real data
Making use of data is not anymore a niche project but central to almost every project. With access to massive compute resources and vast amounts of data, it seems at least in principle possible to solve any problem. However, successful data science projects result from the intelligent application of...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
[Cham]
Springer
[2020]
|
Ausgabe: | Second edition |
Schriftenreihe: | Texts in Computer Science
|
Schlagworte: | |
Zusammenfassung: | Making use of data is not anymore a niche project but central to almost every project. With access to massive compute resources and vast amounts of data, it seems at least in principle possible to solve any problem. However, successful data science projects result from the intelligent application of: human intuition in combination with computational power; sound background knowledge with computer-aided modelling; and critical reflection of the obtained insights and results. Substantially updating the previous edition, then entitled Guide to Intelligent Data Analysis, this core textbook continues to provide a hands-on instructional approach to many data science techniques, and explains how these are used to solve real world problems. The work balances the practical aspects of applying and using data science techniques with the theoretical and algorithmic underpinnings from mathematics and statistics. Major updates on techniques and subject coverage (including deep learning) are included. Topics and features: Guides the reader through the process of data science, following the interdependent steps of project understanding, data understanding, data blending and transformation, modeling, as well as deployment and monitoring Includes numerous examples using the open source KNIME Analytics Platform, together with an introductory appendix Provides a review of the basics of classical statistics that support and justify many data analysis methods, and a glossary of statistical terms Integrates illustrations and case-study-style examples to support pedagogical exposition Supplies further tools and information at an associated website This practical and systematic textbook/reference is a "need-to-have" tool for graduate and advanced undergraduate students and essential reading for all professionals who face data science problems. Moreover, it is a "need to use, need to keep" resource following one's exploration of the subject. |
Beschreibung: | xiii, 420 Seiten Illustrationen, Diagramme |
ISBN: | 9783030455736 9783030455767 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV046881420 | ||
003 | DE-604 | ||
005 | 20211110 | ||
007 | t | ||
008 | 200903s2020 a||| |||| 00||| eng d | ||
020 | |a 9783030455736 |c eBook |9 978-3-030-45573-6 | ||
020 | |a 9783030455767 |9 978-3-030-45576-7 | ||
035 | |a (OCoLC)1197703708 | ||
035 | |a (DE-599)BVBBV046881420 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-83 |a DE-355 |a DE-11 |a DE-1043 |a DE-1051 |a DE-1102 | ||
084 | |a ST 530 |0 (DE-625)143679: |2 rvk | ||
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
100 | 1 | |a Berthold, Michael |d 1966- |0 (DE-588)123947162 |4 aut | |
245 | 1 | 0 | |a Guide to intelligent data science |b how to intelligently make use of real data |c Michael R. Berthold, Christian Borgelt, Frank Höppner, Frank Klawonn, Rosaria Silipo |
250 | |a Second edition | ||
264 | 1 | |a [Cham] |b Springer |c [2020] | |
300 | |a xiii, 420 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Texts in Computer Science | |
520 | 3 | |a Making use of data is not anymore a niche project but central to almost every project. With access to massive compute resources and vast amounts of data, it seems at least in principle possible to solve any problem. However, successful data science projects result from the intelligent application of: human intuition in combination with computational power; sound background knowledge with computer-aided modelling; and critical reflection of the obtained insights and results. Substantially updating the previous edition, then entitled Guide to Intelligent Data Analysis, this core textbook continues to provide a hands-on instructional approach to many data science techniques, and explains how these are used to solve real world problems. The work balances the practical aspects of applying and using data science techniques with the theoretical and algorithmic underpinnings from mathematics and statistics. Major updates on techniques and subject coverage (including deep learning) are included. Topics and features: Guides the reader through the process of data science, following the interdependent steps of project understanding, data understanding, data blending and transformation, modeling, as well as deployment and monitoring Includes numerous examples using the open source KNIME Analytics Platform, together with an introductory appendix Provides a review of the basics of classical statistics that support and justify many data analysis methods, and a glossary of statistical terms Integrates illustrations and case-study-style examples to support pedagogical exposition Supplies further tools and information at an associated website This practical and systematic textbook/reference is a "need-to-have" tool for graduate and advanced undergraduate students and essential reading for all professionals who face data science problems. Moreover, it is a "need to use, need to keep" resource following one's exploration of the subject. | |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Data Mining |0 (DE-588)4428654-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Data Science |0 (DE-588)1140936166 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Big Data |0 (DE-588)4802620-7 |2 gnd |9 rswk-swf |
653 | 0 | |a Data mining | |
653 | 0 | |a Machine learning | |
653 | 0 | |a Big data | |
689 | 0 | 0 | |a Data Science |0 (DE-588)1140936166 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Data Mining |0 (DE-588)4428654-5 |D s |
689 | 1 | 1 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 1 | 2 | |a Big Data |0 (DE-588)4802620-7 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Borgelt, Christian |d 1967- |0 (DE-588)122338421 |4 aut | |
700 | 1 | |a Höppner, Frank |d 1959- |0 (DE-588)1021329304 |4 aut | |
700 | 1 | |a Klawonn, Frank |d 1964- |0 (DE-588)113214030 |4 aut | |
700 | 1 | |a Silipo, Rosaria |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-030-45574-3 |
999 | |a oai:aleph.bib-bvb.de:BVB01-032291421 |
Datensatz im Suchindex
_version_ | 1804181738843275264 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Berthold, Michael 1966- Borgelt, Christian 1967- Höppner, Frank 1959- Klawonn, Frank 1964- Silipo, Rosaria |
author_GND | (DE-588)123947162 (DE-588)122338421 (DE-588)1021329304 (DE-588)113214030 |
author_facet | Berthold, Michael 1966- Borgelt, Christian 1967- Höppner, Frank 1959- Klawonn, Frank 1964- Silipo, Rosaria |
author_role | aut aut aut aut aut |
author_sort | Berthold, Michael 1966- |
author_variant | m b mb c b cb f h fh f k fk r s rs |
building | Verbundindex |
bvnumber | BV046881420 |
classification_rvk | ST 530 ST 300 |
ctrlnum | (OCoLC)1197703708 (DE-599)BVBBV046881420 |
discipline | Informatik |
discipline_str_mv | Informatik |
edition | Second edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03973nam a2200541 c 4500</leader><controlfield tag="001">BV046881420</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20211110 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">200903s2020 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030455736</subfield><subfield code="c">eBook</subfield><subfield code="9">978-3-030-45573-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030455767</subfield><subfield code="9">978-3-030-45576-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1197703708</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046881420</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-1051</subfield><subfield code="a">DE-1102</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 530</subfield><subfield code="0">(DE-625)143679:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Berthold, Michael</subfield><subfield code="d">1966-</subfield><subfield code="0">(DE-588)123947162</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Guide to intelligent data science</subfield><subfield code="b">how to intelligently make use of real data</subfield><subfield code="c">Michael R. Berthold, Christian Borgelt, Frank Höppner, Frank Klawonn, Rosaria Silipo</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Cham]</subfield><subfield code="b">Springer</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiii, 420 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Texts in Computer Science</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Making use of data is not anymore a niche project but central to almost every project. With access to massive compute resources and vast amounts of data, it seems at least in principle possible to solve any problem. However, successful data science projects result from the intelligent application of: human intuition in combination with computational power; sound background knowledge with computer-aided modelling; and critical reflection of the obtained insights and results. Substantially updating the previous edition, then entitled Guide to Intelligent Data Analysis, this core textbook continues to provide a hands-on instructional approach to many data science techniques, and explains how these are used to solve real world problems. The work balances the practical aspects of applying and using data science techniques with the theoretical and algorithmic underpinnings from mathematics and statistics. Major updates on techniques and subject coverage (including deep learning) are included. Topics and features: Guides the reader through the process of data science, following the interdependent steps of project understanding, data understanding, data blending and transformation, modeling, as well as deployment and monitoring Includes numerous examples using the open source KNIME Analytics Platform, together with an introductory appendix Provides a review of the basics of classical statistics that support and justify many data analysis methods, and a glossary of statistical terms Integrates illustrations and case-study-style examples to support pedagogical exposition Supplies further tools and information at an associated website This practical and systematic textbook/reference is a "need-to-have" tool for graduate and advanced undergraduate students and essential reading for all professionals who face data science problems. Moreover, it is a "need to use, need to keep" resource following one's exploration of the subject.</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data Science</subfield><subfield code="0">(DE-588)1140936166</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Data mining</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Big data</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Data Science</subfield><subfield code="0">(DE-588)1140936166</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Borgelt, Christian</subfield><subfield code="d">1967-</subfield><subfield code="0">(DE-588)122338421</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Höppner, Frank</subfield><subfield code="d">1959-</subfield><subfield code="0">(DE-588)1021329304</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Klawonn, Frank</subfield><subfield code="d">1964-</subfield><subfield code="0">(DE-588)113214030</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Silipo, Rosaria</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-030-45574-3</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032291421</subfield></datafield></record></collection> |
id | DE-604.BV046881420 |
illustrated | Illustrated |
index_date | 2024-07-03T15:18:25Z |
indexdate | 2024-07-10T08:56:26Z |
institution | BVB |
isbn | 9783030455736 9783030455767 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032291421 |
oclc_num | 1197703708 |
open_access_boolean | |
owner | DE-83 DE-355 DE-BY-UBR DE-11 DE-1043 DE-1051 DE-1102 |
owner_facet | DE-83 DE-355 DE-BY-UBR DE-11 DE-1043 DE-1051 DE-1102 |
physical | xiii, 420 Seiten Illustrationen, Diagramme |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Springer |
record_format | marc |
series2 | Texts in Computer Science |
spelling | Berthold, Michael 1966- (DE-588)123947162 aut Guide to intelligent data science how to intelligently make use of real data Michael R. Berthold, Christian Borgelt, Frank Höppner, Frank Klawonn, Rosaria Silipo Second edition [Cham] Springer [2020] xiii, 420 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Texts in Computer Science Making use of data is not anymore a niche project but central to almost every project. With access to massive compute resources and vast amounts of data, it seems at least in principle possible to solve any problem. However, successful data science projects result from the intelligent application of: human intuition in combination with computational power; sound background knowledge with computer-aided modelling; and critical reflection of the obtained insights and results. Substantially updating the previous edition, then entitled Guide to Intelligent Data Analysis, this core textbook continues to provide a hands-on instructional approach to many data science techniques, and explains how these are used to solve real world problems. The work balances the practical aspects of applying and using data science techniques with the theoretical and algorithmic underpinnings from mathematics and statistics. Major updates on techniques and subject coverage (including deep learning) are included. Topics and features: Guides the reader through the process of data science, following the interdependent steps of project understanding, data understanding, data blending and transformation, modeling, as well as deployment and monitoring Includes numerous examples using the open source KNIME Analytics Platform, together with an introductory appendix Provides a review of the basics of classical statistics that support and justify many data analysis methods, and a glossary of statistical terms Integrates illustrations and case-study-style examples to support pedagogical exposition Supplies further tools and information at an associated website This practical and systematic textbook/reference is a "need-to-have" tool for graduate and advanced undergraduate students and essential reading for all professionals who face data science problems. Moreover, it is a "need to use, need to keep" resource following one's exploration of the subject. Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Data Mining (DE-588)4428654-5 gnd rswk-swf Data Science (DE-588)1140936166 gnd rswk-swf Big Data (DE-588)4802620-7 gnd rswk-swf Data mining Machine learning Big data Data Science (DE-588)1140936166 s DE-604 Data Mining (DE-588)4428654-5 s Maschinelles Lernen (DE-588)4193754-5 s Big Data (DE-588)4802620-7 s Borgelt, Christian 1967- (DE-588)122338421 aut Höppner, Frank 1959- (DE-588)1021329304 aut Klawonn, Frank 1964- (DE-588)113214030 aut Silipo, Rosaria aut Erscheint auch als Online-Ausgabe 978-3-030-45574-3 |
spellingShingle | Berthold, Michael 1966- Borgelt, Christian 1967- Höppner, Frank 1959- Klawonn, Frank 1964- Silipo, Rosaria Guide to intelligent data science how to intelligently make use of real data Maschinelles Lernen (DE-588)4193754-5 gnd Data Mining (DE-588)4428654-5 gnd Data Science (DE-588)1140936166 gnd Big Data (DE-588)4802620-7 gnd |
subject_GND | (DE-588)4193754-5 (DE-588)4428654-5 (DE-588)1140936166 (DE-588)4802620-7 |
title | Guide to intelligent data science how to intelligently make use of real data |
title_auth | Guide to intelligent data science how to intelligently make use of real data |
title_exact_search | Guide to intelligent data science how to intelligently make use of real data |
title_exact_search_txtP | Guide to intelligent data science how to intelligently make use of real data |
title_full | Guide to intelligent data science how to intelligently make use of real data Michael R. Berthold, Christian Borgelt, Frank Höppner, Frank Klawonn, Rosaria Silipo |
title_fullStr | Guide to intelligent data science how to intelligently make use of real data Michael R. Berthold, Christian Borgelt, Frank Höppner, Frank Klawonn, Rosaria Silipo |
title_full_unstemmed | Guide to intelligent data science how to intelligently make use of real data Michael R. Berthold, Christian Borgelt, Frank Höppner, Frank Klawonn, Rosaria Silipo |
title_short | Guide to intelligent data science |
title_sort | guide to intelligent data science how to intelligently make use of real data |
title_sub | how to intelligently make use of real data |
topic | Maschinelles Lernen (DE-588)4193754-5 gnd Data Mining (DE-588)4428654-5 gnd Data Science (DE-588)1140936166 gnd Big Data (DE-588)4802620-7 gnd |
topic_facet | Maschinelles Lernen Data Mining Data Science Big Data |
work_keys_str_mv | AT bertholdmichael guidetointelligentdatasciencehowtointelligentlymakeuseofrealdata AT borgeltchristian guidetointelligentdatasciencehowtointelligentlymakeuseofrealdata AT hoppnerfrank guidetointelligentdatasciencehowtointelligentlymakeuseofrealdata AT klawonnfrank guidetointelligentdatasciencehowtointelligentlymakeuseofrealdata AT siliporosaria guidetointelligentdatasciencehowtointelligentlymakeuseofrealdata |