Differential geometry and lie groups: a computational perspective
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cham
Springer
[2020]
|
Schriftenreihe: | Geometry and Computing
12 |
Schlagworte: | |
Online-Zugang: | BTU01 FHN01 FHR01 FRO01 FWS01 FWS02 HTW01 TUM01 UBA01 UBM01 UBT01 UBW01 UBY01 UEI01 UPA01 Volltext |
Beschreibung: | 1 Online-Ressource (XV, 777 Seiten) Illustrationen |
ISBN: | 9783030460402 |
DOI: | 10.1007/978-3-030-46040-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV046878321 | ||
003 | DE-604 | ||
005 | 20230109 | ||
007 | cr|uuu---uuuuu | ||
008 | 200901s2020 |||| o||u| ||||||eng d | ||
020 | |a 9783030460402 |c Online |9 978-3-030-46040-2 | ||
024 | 7 | |a 10.1007/978-3-030-46040-2 |2 doi | |
035 | |a (ZDB-2-SMA)9783030460402 | ||
035 | |a (OCoLC)1199773667 | ||
035 | |a (DE-599)BVBBV046878321 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-19 |a DE-898 |a DE-861 |a DE-188 |a DE-523 |a DE-863 |a DE-20 |a DE-862 |a DE-92 |a DE-824 |a DE-384 |a DE-703 |a DE-739 |a DE-634 |a DE-706 |a DE-83 | ||
082 | 0 | |a 516.36 |2 23 | |
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Gallier, Jean H. |d 1949- |e Verfasser |0 (DE-588)122585615 |4 aut | |
245 | 1 | 0 | |a Differential geometry and lie groups |b a computational perspective |c Jean Gallier, Jocelyn Quaintance |
264 | 1 | |a Cham |b Springer |c [2020] | |
264 | 4 | |c © 2020 | |
300 | |a 1 Online-Ressource (XV, 777 Seiten) |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Geometry and Computing |v 12 | |
650 | 4 | |a Differential Geometry | |
650 | 4 | |a Topological Groups, Lie Groups | |
650 | 4 | |a Computational Mathematics and Numerical Analysis | |
650 | 4 | |a Differential geometry | |
650 | 4 | |a Topological groups | |
650 | 4 | |a Lie groups | |
650 | 4 | |a Computer mathematics | |
650 | 0 | 7 | |a Differentialgeometrie |0 (DE-588)4012248-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lie-Gruppe |0 (DE-588)4035695-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Topologische Gruppe |0 (DE-588)4135793-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Differentialgeometrie |0 (DE-588)4012248-7 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Lie-Gruppe |0 (DE-588)4035695-4 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Topologische Gruppe |0 (DE-588)4135793-0 |D s |
689 | 2 | |5 DE-604 | |
700 | 1 | |a Quaintance, Jocelyn |0 (DE-588)1081271450 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-030-46039-6 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-030-46041-9 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-030-46042-6 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-030-46040-2 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SMA | ||
940 | 1 | |q ZDB-2-SMA_2020_Fremddaten | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032288372 | ||
966 | e | |u https://doi.org/10.1007/978-3-030-46040-2 |l BTU01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-46040-2 |l FHN01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-46040-2 |l FHR01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-46040-2 |l FRO01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-46040-2 |l FWS01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-46040-2 |l FWS02 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-46040-2 |l HTW01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-46040-2 |l TUM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-46040-2 |l UBA01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-46040-2 |l UBM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-46040-2 |l UBT01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-46040-2 |l UBW01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-46040-2 |l UBY01 |p ZDB-2-SMA |q UBY_PDA_SMA_Kauf |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-46040-2 |l UEI01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-46040-2 |l UPA01 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
DE-BY-FWS_katkey | 851501 |
---|---|
_version_ | 1806192627200032768 |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Gallier, Jean H. 1949- Quaintance, Jocelyn |
author_GND | (DE-588)122585615 (DE-588)1081271450 |
author_facet | Gallier, Jean H. 1949- Quaintance, Jocelyn |
author_role | aut aut |
author_sort | Gallier, Jean H. 1949- |
author_variant | j h g jh jhg j q jq |
building | Verbundindex |
bvnumber | BV046878321 |
classification_rvk | SK 370 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA |
ctrlnum | (ZDB-2-SMA)9783030460402 (OCoLC)1199773667 (DE-599)BVBBV046878321 |
dewey-full | 516.36 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.36 |
dewey-search | 516.36 |
dewey-sort | 3516.36 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1007/978-3-030-46040-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03803nmm a2200793zcb4500</leader><controlfield tag="001">BV046878321</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230109 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200901s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030460402</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-030-46040-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-030-46040-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SMA)9783030460402</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1199773667</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046878321</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.36</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gallier, Jean H.</subfield><subfield code="d">1949-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)122585615</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Differential geometry and lie groups</subfield><subfield code="b">a computational perspective</subfield><subfield code="c">Jean Gallier, Jocelyn Quaintance</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XV, 777 Seiten)</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Geometry and Computing</subfield><subfield code="v">12</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups, Lie Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Mathematics and Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer mathematics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologische Gruppe</subfield><subfield code="0">(DE-588)4135793-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Topologische Gruppe</subfield><subfield code="0">(DE-588)4135793-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Quaintance, Jocelyn</subfield><subfield code="0">(DE-588)1081271450</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-030-46039-6</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-030-46041-9</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-030-46042-6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-030-46040-2</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_2020_Fremddaten</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032288372</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-46040-2</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-46040-2</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-46040-2</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-46040-2</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-46040-2</subfield><subfield code="l">FWS01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-46040-2</subfield><subfield code="l">FWS02</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-46040-2</subfield><subfield code="l">HTW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-46040-2</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-46040-2</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-46040-2</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-46040-2</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-46040-2</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-46040-2</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="q">UBY_PDA_SMA_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-46040-2</subfield><subfield code="l">UEI01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-46040-2</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046878321 |
illustrated | Not Illustrated |
index_date | 2024-07-03T15:17:13Z |
indexdate | 2024-08-01T15:38:38Z |
institution | BVB |
isbn | 9783030460402 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032288372 |
oclc_num | 1199773667 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-898 DE-BY-UBR DE-861 DE-188 DE-523 DE-863 DE-BY-FWS DE-20 DE-862 DE-BY-FWS DE-92 DE-824 DE-384 DE-703 DE-739 DE-634 DE-706 DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-898 DE-BY-UBR DE-861 DE-188 DE-523 DE-863 DE-BY-FWS DE-20 DE-862 DE-BY-FWS DE-92 DE-824 DE-384 DE-703 DE-739 DE-634 DE-706 DE-83 |
physical | 1 Online-Ressource (XV, 777 Seiten) Illustrationen |
psigel | ZDB-2-SMA ZDB-2-SMA_2020_Fremddaten ZDB-2-SMA UBY_PDA_SMA_Kauf |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Springer |
record_format | marc |
series2 | Geometry and Computing |
spellingShingle | Gallier, Jean H. 1949- Quaintance, Jocelyn Differential geometry and lie groups a computational perspective Differential Geometry Topological Groups, Lie Groups Computational Mathematics and Numerical Analysis Differential geometry Topological groups Lie groups Computer mathematics Differentialgeometrie (DE-588)4012248-7 gnd Lie-Gruppe (DE-588)4035695-4 gnd Topologische Gruppe (DE-588)4135793-0 gnd |
subject_GND | (DE-588)4012248-7 (DE-588)4035695-4 (DE-588)4135793-0 |
title | Differential geometry and lie groups a computational perspective |
title_auth | Differential geometry and lie groups a computational perspective |
title_exact_search | Differential geometry and lie groups a computational perspective |
title_exact_search_txtP | Differential geometry and lie groups a computational perspective |
title_full | Differential geometry and lie groups a computational perspective Jean Gallier, Jocelyn Quaintance |
title_fullStr | Differential geometry and lie groups a computational perspective Jean Gallier, Jocelyn Quaintance |
title_full_unstemmed | Differential geometry and lie groups a computational perspective Jean Gallier, Jocelyn Quaintance |
title_short | Differential geometry and lie groups |
title_sort | differential geometry and lie groups a computational perspective |
title_sub | a computational perspective |
topic | Differential Geometry Topological Groups, Lie Groups Computational Mathematics and Numerical Analysis Differential geometry Topological groups Lie groups Computer mathematics Differentialgeometrie (DE-588)4012248-7 gnd Lie-Gruppe (DE-588)4035695-4 gnd Topologische Gruppe (DE-588)4135793-0 gnd |
topic_facet | Differential Geometry Topological Groups, Lie Groups Computational Mathematics and Numerical Analysis Differential geometry Topological groups Lie groups Computer mathematics Differentialgeometrie Lie-Gruppe Topologische Gruppe |
url | https://doi.org/10.1007/978-3-030-46040-2 |
work_keys_str_mv | AT gallierjeanh differentialgeometryandliegroupsacomputationalperspective AT quaintancejocelyn differentialgeometryandliegroupsacomputationalperspective |