Mathematical Theory of Economic Dynamics and Equilibria:
This book is devoted to the mathematical analysis of models of economic dynamics and equilibria. These models form an important part of mathemati cal economics. Models of economic dynamics describe the motion of an economy through time. The basic concept in the study of these models is that of a tr...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1977
|
Ausgabe: | 1st ed. 1977 |
Schlagworte: | |
Online-Zugang: | BTU01 Volltext |
Zusammenfassung: | This book is devoted to the mathematical analysis of models of economic dynamics and equilibria. These models form an important part of mathemati cal economics. Models of economic dynamics describe the motion of an economy through time. The basic concept in the study of these models is that of a trajectory, i.e., a sequence of elements of the phase space that describe admissible (possible) development of the economy. From all trajectories, we select those that are" desirable," i.e., optimal in terms of a certain criterion. The apparatus of point-set maps is the appropriate tool for the analysis of these models. The topological aspects of these maps (particularly, the Kakutani fixed-point theorem) are used to study equilibrium models as well as n-person games. To study dynamic models we use a special class of maps which, in this book, are called superlinear maps. The theory of superlinear point-set maps is, obviously, of interest in its own right. This theory is described in the first chapter. Chapters 2-4 are devoted to models of economic dynamics and present a detailed study of the properties of optimal trajectories. These properties are described in terms of theorems on characteristics (on the existence of dual prices) and turnpike theorems (theorems on asymptotic trajectories). In Chapter 5, we state and study a model of economic equilibrium. The basic idea is to establish a theorem about the existence of an equilibrium state for the Arrow-Debreu model and a certain generalization of it |
Beschreibung: | 1 Online-Ressource (XVI, 254 p) |
ISBN: | 9781461298861 |
DOI: | 10.1007/978-1-4612-9886-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV046874006 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 200828s1977 |||| o||u| ||||||eng d | ||
020 | |a 9781461298861 |9 978-1-4612-9886-1 | ||
024 | 7 | |a 10.1007/978-1-4612-9886-1 |2 doi | |
035 | |a (ZDB-2-SBE)978-1-4612-9886-1 | ||
035 | |a (OCoLC)863791037 | ||
035 | |a (DE-599)BVBBV046874006 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
082 | 0 | |a 330 |2 23 | |
084 | |a QC 140 |0 (DE-625)141254: |2 rvk | ||
084 | |a QH 300 |0 (DE-625)141566: |2 rvk | ||
084 | |a SK 980 |0 (DE-625)143277: |2 rvk | ||
100 | 1 | |a Makarov, V.L. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Mathematical Theory of Economic Dynamics and Equilibria |c by V.L. Makarov, A.M. Rubinov |
250 | |a 1st ed. 1977 | ||
264 | 1 | |a New York, NY |b Springer New York |c 1977 | |
300 | |a 1 Online-Ressource (XVI, 254 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a This book is devoted to the mathematical analysis of models of economic dynamics and equilibria. These models form an important part of mathemati cal economics. Models of economic dynamics describe the motion of an economy through time. The basic concept in the study of these models is that of a trajectory, i.e., a sequence of elements of the phase space that describe admissible (possible) development of the economy. From all trajectories, we select those that are" desirable," i.e., optimal in terms of a certain criterion. The apparatus of point-set maps is the appropriate tool for the analysis of these models. The topological aspects of these maps (particularly, the Kakutani fixed-point theorem) are used to study equilibrium models as well as n-person games. To study dynamic models we use a special class of maps which, in this book, are called superlinear maps. The theory of superlinear point-set maps is, obviously, of interest in its own right. This theory is described in the first chapter. Chapters 2-4 are devoted to models of economic dynamics and present a detailed study of the properties of optimal trajectories. These properties are described in terms of theorems on characteristics (on the existence of dual prices) and turnpike theorems (theorems on asymptotic trajectories). In Chapter 5, we state and study a model of economic equilibrium. The basic idea is to establish a theorem about the existence of an equilibrium state for the Arrow-Debreu model and a certain generalization of it | ||
650 | 4 | |a Economics, general | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Economics | |
650 | 4 | |a Management science | |
650 | 4 | |a Mathematics | |
650 | 0 | 7 | |a Ökonometrie |0 (DE-588)4132280-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Ökonometrie |0 (DE-588)4132280-0 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Rubinov, A.M. |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781461298885 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780387901916 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781461298878 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-9886-1 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SBE |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SBE_Archiv | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032284138 | ||
966 | e | |u https://doi.org/10.1007/978-1-4612-9886-1 |l BTU01 |p ZDB-2-SBE |q ZDB-2-SBE_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181724846882816 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Makarov, V.L Rubinov, A.M |
author_facet | Makarov, V.L Rubinov, A.M |
author_role | aut aut |
author_sort | Makarov, V.L |
author_variant | v m vm a r ar |
building | Verbundindex |
bvnumber | BV046874006 |
classification_rvk | QC 140 QH 300 SK 980 |
collection | ZDB-2-SBE ZDB-2-BAE |
ctrlnum | (ZDB-2-SBE)978-1-4612-9886-1 (OCoLC)863791037 (DE-599)BVBBV046874006 |
dewey-full | 330 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 330 - Economics |
dewey-raw | 330 |
dewey-search | 330 |
dewey-sort | 3330 |
dewey-tens | 330 - Economics |
discipline | Mathematik Wirtschaftswissenschaften |
discipline_str_mv | Mathematik Wirtschaftswissenschaften |
doi_str_mv | 10.1007/978-1-4612-9886-1 |
edition | 1st ed. 1977 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03401nmm a2200541zc 4500</leader><controlfield tag="001">BV046874006</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200828s1977 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461298861</subfield><subfield code="9">978-1-4612-9886-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-9886-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SBE)978-1-4612-9886-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863791037</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046874006</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">330</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QC 140</subfield><subfield code="0">(DE-625)141254:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 300</subfield><subfield code="0">(DE-625)141566:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 980</subfield><subfield code="0">(DE-625)143277:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Makarov, V.L.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical Theory of Economic Dynamics and Equilibria</subfield><subfield code="c">by V.L. Makarov, A.M. Rubinov</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 1977</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1977</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVI, 254 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book is devoted to the mathematical analysis of models of economic dynamics and equilibria. These models form an important part of mathemati cal economics. Models of economic dynamics describe the motion of an economy through time. The basic concept in the study of these models is that of a trajectory, i.e., a sequence of elements of the phase space that describe admissible (possible) development of the economy. From all trajectories, we select those that are" desirable," i.e., optimal in terms of a certain criterion. The apparatus of point-set maps is the appropriate tool for the analysis of these models. The topological aspects of these maps (particularly, the Kakutani fixed-point theorem) are used to study equilibrium models as well as n-person games. To study dynamic models we use a special class of maps which, in this book, are called superlinear maps. The theory of superlinear point-set maps is, obviously, of interest in its own right. This theory is described in the first chapter. Chapters 2-4 are devoted to models of economic dynamics and present a detailed study of the properties of optimal trajectories. These properties are described in terms of theorems on characteristics (on the existence of dual prices) and turnpike theorems (theorems on asymptotic trajectories). In Chapter 5, we state and study a model of economic equilibrium. The basic idea is to establish a theorem about the existence of an equilibrium state for the Arrow-Debreu model and a certain generalization of it</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Management science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ökonometrie</subfield><subfield code="0">(DE-588)4132280-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Ökonometrie</subfield><subfield code="0">(DE-588)4132280-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rubinov, A.M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781461298885</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780387901916</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781461298878</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-9886-1</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SBE</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SBE_Archiv</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032284138</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4612-9886-1</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SBE</subfield><subfield code="q">ZDB-2-SBE_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046874006 |
illustrated | Not Illustrated |
index_date | 2024-07-03T15:15:40Z |
indexdate | 2024-07-10T08:56:13Z |
institution | BVB |
isbn | 9781461298861 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032284138 |
oclc_num | 863791037 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | 1 Online-Ressource (XVI, 254 p) |
psigel | ZDB-2-SBE ZDB-2-BAE ZDB-2-SBE_Archiv ZDB-2-SBE ZDB-2-SBE_Archiv |
publishDate | 1977 |
publishDateSearch | 1977 |
publishDateSort | 1977 |
publisher | Springer New York |
record_format | marc |
spelling | Makarov, V.L. Verfasser aut Mathematical Theory of Economic Dynamics and Equilibria by V.L. Makarov, A.M. Rubinov 1st ed. 1977 New York, NY Springer New York 1977 1 Online-Ressource (XVI, 254 p) txt rdacontent c rdamedia cr rdacarrier This book is devoted to the mathematical analysis of models of economic dynamics and equilibria. These models form an important part of mathemati cal economics. Models of economic dynamics describe the motion of an economy through time. The basic concept in the study of these models is that of a trajectory, i.e., a sequence of elements of the phase space that describe admissible (possible) development of the economy. From all trajectories, we select those that are" desirable," i.e., optimal in terms of a certain criterion. The apparatus of point-set maps is the appropriate tool for the analysis of these models. The topological aspects of these maps (particularly, the Kakutani fixed-point theorem) are used to study equilibrium models as well as n-person games. To study dynamic models we use a special class of maps which, in this book, are called superlinear maps. The theory of superlinear point-set maps is, obviously, of interest in its own right. This theory is described in the first chapter. Chapters 2-4 are devoted to models of economic dynamics and present a detailed study of the properties of optimal trajectories. These properties are described in terms of theorems on characteristics (on the existence of dual prices) and turnpike theorems (theorems on asymptotic trajectories). In Chapter 5, we state and study a model of economic equilibrium. The basic idea is to establish a theorem about the existence of an equilibrium state for the Arrow-Debreu model and a certain generalization of it Economics, general Mathematics, general Economics Management science Mathematics Ökonometrie (DE-588)4132280-0 gnd rswk-swf Ökonometrie (DE-588)4132280-0 s DE-604 Rubinov, A.M. aut Erscheint auch als Druck-Ausgabe 9781461298885 Erscheint auch als Druck-Ausgabe 9780387901916 Erscheint auch als Druck-Ausgabe 9781461298878 https://doi.org/10.1007/978-1-4612-9886-1 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Makarov, V.L Rubinov, A.M Mathematical Theory of Economic Dynamics and Equilibria Economics, general Mathematics, general Economics Management science Mathematics Ökonometrie (DE-588)4132280-0 gnd |
subject_GND | (DE-588)4132280-0 |
title | Mathematical Theory of Economic Dynamics and Equilibria |
title_auth | Mathematical Theory of Economic Dynamics and Equilibria |
title_exact_search | Mathematical Theory of Economic Dynamics and Equilibria |
title_exact_search_txtP | Mathematical Theory of Economic Dynamics and Equilibria |
title_full | Mathematical Theory of Economic Dynamics and Equilibria by V.L. Makarov, A.M. Rubinov |
title_fullStr | Mathematical Theory of Economic Dynamics and Equilibria by V.L. Makarov, A.M. Rubinov |
title_full_unstemmed | Mathematical Theory of Economic Dynamics and Equilibria by V.L. Makarov, A.M. Rubinov |
title_short | Mathematical Theory of Economic Dynamics and Equilibria |
title_sort | mathematical theory of economic dynamics and equilibria |
topic | Economics, general Mathematics, general Economics Management science Mathematics Ökonometrie (DE-588)4132280-0 gnd |
topic_facet | Economics, general Mathematics, general Economics Management science Mathematics Ökonometrie |
url | https://doi.org/10.1007/978-1-4612-9886-1 |
work_keys_str_mv | AT makarovvl mathematicaltheoryofeconomicdynamicsandequilibria AT rubinovam mathematicaltheoryofeconomicdynamicsandequilibria |