Limit Theorems and Applications of Set-Valued and Fuzzy Set-Valued Random Variables:
After the pioneering works by Robbins {1944, 1945) and Choquet (1955), the notation of a set-valued random variable (called a random closed set in literatures) was systematically introduced by Kendall {1974) and Matheron {1975). It is well known that the theory of set-valued random variables is a na...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
2002
|
Ausgabe: | 1st ed. 2002 |
Schriftenreihe: | Theory and Decision Library B, Mathematical and Statistical Methods
43 |
Schlagworte: | |
Online-Zugang: | BTU01 Volltext |
Zusammenfassung: | After the pioneering works by Robbins {1944, 1945) and Choquet (1955), the notation of a set-valued random variable (called a random closed set in literatures) was systematically introduced by Kendall {1974) and Matheron {1975). It is well known that the theory of set-valued random variables is a natural extension of that of general real-valued random variables or random vectors. However, owing to the topological structure of the space of closed sets and special features of set-theoretic operations ( cf. Beer [27]), set-valued random variables have many special properties. This gives new meanings for the classical probability theory. As a result of the development in this area in the past more than 30 years, the theory of set-valued random variables with many applications has become one of new and active branches in probability theory. In practice also, we are often faced with random experiments whose outcomes are not numbers but are expressed in inexact linguistic terms |
Beschreibung: | 1 Online-Ressource (XIII, 394 p) |
ISBN: | 9789401599320 |
DOI: | 10.1007/978-94-015-9932-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV046873888 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 200828s2002 |||| o||u| ||||||eng d | ||
020 | |a 9789401599320 |9 978-94-015-9932-0 | ||
024 | 7 | |a 10.1007/978-94-015-9932-0 |2 doi | |
035 | |a (ZDB-2-SBE)978-94-015-9932-0 | ||
035 | |a (OCoLC)903194453 | ||
035 | |a (DE-599)BVBBV046873888 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
082 | 0 | |a 511.3 |2 23 | |
100 | 0 | |a Shoumei Li |e Verfasser |4 aut | |
245 | 1 | 0 | |a Limit Theorems and Applications of Set-Valued and Fuzzy Set-Valued Random Variables |c by Shoumei Li, Y. Ogura, V. Kreinovich |
250 | |a 1st ed. 2002 | ||
264 | 1 | |a Dordrecht |b Springer Netherlands |c 2002 | |
300 | |a 1 Online-Ressource (XIII, 394 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Theory and Decision Library B, Mathematical and Statistical Methods |v 43 | |
520 | |a After the pioneering works by Robbins {1944, 1945) and Choquet (1955), the notation of a set-valued random variable (called a random closed set in literatures) was systematically introduced by Kendall {1974) and Matheron {1975). It is well known that the theory of set-valued random variables is a natural extension of that of general real-valued random variables or random vectors. However, owing to the topological structure of the space of closed sets and special features of set-theoretic operations ( cf. Beer [27]), set-valued random variables have many special properties. This gives new meanings for the classical probability theory. As a result of the development in this area in the past more than 30 years, the theory of set-valued random variables with many applications has become one of new and active branches in probability theory. In practice also, we are often faced with random experiments whose outcomes are not numbers but are expressed in inexact linguistic terms | ||
650 | 4 | |a Mathematical Logic and Foundations | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Measure and Integration | |
650 | 4 | |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences | |
650 | 4 | |a Mathematical logic | |
650 | 4 | |a Probabilities | |
650 | 4 | |a Measure theory | |
650 | 4 | |a Statistics | |
650 | 0 | 7 | |a Grenzwertsatz |0 (DE-588)4158163-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zufallsvariable |0 (DE-588)4129514-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fuzzy-Zufallsvariable |0 (DE-588)4201987-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Grenzwertsatz |0 (DE-588)4158163-5 |D s |
689 | 0 | 1 | |a Zufallsvariable |0 (DE-588)4129514-6 |D s |
689 | 0 | 2 | |a Fuzzy-Zufallsvariable |0 (DE-588)4201987-4 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Ogura, Y. |4 aut | |
700 | 1 | |a Kreinovich, V. |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789048161393 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781402009181 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789401599337 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-015-9932-0 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SBE |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SBE_Archiv | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032284020 | ||
966 | e | |u https://doi.org/10.1007/978-94-015-9932-0 |l BTU01 |p ZDB-2-SBE |q ZDB-2-SBE_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181724566913024 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Shoumei Li Ogura, Y. Kreinovich, V. |
author_facet | Shoumei Li Ogura, Y. Kreinovich, V. |
author_role | aut aut aut |
author_sort | Shoumei Li |
author_variant | s l sl y o yo v k vk |
building | Verbundindex |
bvnumber | BV046873888 |
collection | ZDB-2-SBE ZDB-2-BAE |
ctrlnum | (ZDB-2-SBE)978-94-015-9932-0 (OCoLC)903194453 (DE-599)BVBBV046873888 |
dewey-full | 511.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3 |
dewey-search | 511.3 |
dewey-sort | 3511.3 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik Wirtschaftswissenschaften |
discipline_str_mv | Mathematik Wirtschaftswissenschaften |
doi_str_mv | 10.1007/978-94-015-9932-0 |
edition | 1st ed. 2002 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03361nmm a2200613zcb4500</leader><controlfield tag="001">BV046873888</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200828s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401599320</subfield><subfield code="9">978-94-015-9932-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-015-9932-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SBE)978-94-015-9932-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)903194453</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046873888</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Shoumei Li</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Limit Theorems and Applications of Set-Valued and Fuzzy Set-Valued Random Variables</subfield><subfield code="c">by Shoumei Li, Y. Ogura, V. Kreinovich</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 2002</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIII, 394 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Theory and Decision Library B, Mathematical and Statistical Methods</subfield><subfield code="v">43</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">After the pioneering works by Robbins {1944, 1945) and Choquet (1955), the notation of a set-valued random variable (called a random closed set in literatures) was systematically introduced by Kendall {1974) and Matheron {1975). It is well known that the theory of set-valued random variables is a natural extension of that of general real-valued random variables or random vectors. However, owing to the topological structure of the space of closed sets and special features of set-theoretic operations ( cf. Beer [27]), set-valued random variables have many special properties. This gives new meanings for the classical probability theory. As a result of the development in this area in the past more than 30 years, the theory of set-valued random variables with many applications has become one of new and active branches in probability theory. In practice also, we are often faced with random experiments whose outcomes are not numbers but are expressed in inexact linguistic terms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Logic and Foundations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Measure and Integration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical logic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probabilities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Measure theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics </subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Grenzwertsatz</subfield><subfield code="0">(DE-588)4158163-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zufallsvariable</subfield><subfield code="0">(DE-588)4129514-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fuzzy-Zufallsvariable</subfield><subfield code="0">(DE-588)4201987-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Grenzwertsatz</subfield><subfield code="0">(DE-588)4158163-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Zufallsvariable</subfield><subfield code="0">(DE-588)4129514-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Fuzzy-Zufallsvariable</subfield><subfield code="0">(DE-588)4201987-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ogura, Y.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kreinovich, V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789048161393</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781402009181</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789401599337</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-015-9932-0</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SBE</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SBE_Archiv</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032284020</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-94-015-9932-0</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SBE</subfield><subfield code="q">ZDB-2-SBE_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046873888 |
illustrated | Not Illustrated |
index_date | 2024-07-03T15:15:40Z |
indexdate | 2024-07-10T08:56:12Z |
institution | BVB |
isbn | 9789401599320 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032284020 |
oclc_num | 903194453 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | 1 Online-Ressource (XIII, 394 p) |
psigel | ZDB-2-SBE ZDB-2-BAE ZDB-2-SBE_Archiv ZDB-2-SBE ZDB-2-SBE_Archiv |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Theory and Decision Library B, Mathematical and Statistical Methods |
spelling | Shoumei Li Verfasser aut Limit Theorems and Applications of Set-Valued and Fuzzy Set-Valued Random Variables by Shoumei Li, Y. Ogura, V. Kreinovich 1st ed. 2002 Dordrecht Springer Netherlands 2002 1 Online-Ressource (XIII, 394 p) txt rdacontent c rdamedia cr rdacarrier Theory and Decision Library B, Mathematical and Statistical Methods 43 After the pioneering works by Robbins {1944, 1945) and Choquet (1955), the notation of a set-valued random variable (called a random closed set in literatures) was systematically introduced by Kendall {1974) and Matheron {1975). It is well known that the theory of set-valued random variables is a natural extension of that of general real-valued random variables or random vectors. However, owing to the topological structure of the space of closed sets and special features of set-theoretic operations ( cf. Beer [27]), set-valued random variables have many special properties. This gives new meanings for the classical probability theory. As a result of the development in this area in the past more than 30 years, the theory of set-valued random variables with many applications has become one of new and active branches in probability theory. In practice also, we are often faced with random experiments whose outcomes are not numbers but are expressed in inexact linguistic terms Mathematical Logic and Foundations Probability Theory and Stochastic Processes Measure and Integration Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences Mathematical logic Probabilities Measure theory Statistics Grenzwertsatz (DE-588)4158163-5 gnd rswk-swf Zufallsvariable (DE-588)4129514-6 gnd rswk-swf Fuzzy-Zufallsvariable (DE-588)4201987-4 gnd rswk-swf Grenzwertsatz (DE-588)4158163-5 s Zufallsvariable (DE-588)4129514-6 s Fuzzy-Zufallsvariable (DE-588)4201987-4 s DE-604 Ogura, Y. aut Kreinovich, V. aut Erscheint auch als Druck-Ausgabe 9789048161393 Erscheint auch als Druck-Ausgabe 9781402009181 Erscheint auch als Druck-Ausgabe 9789401599337 https://doi.org/10.1007/978-94-015-9932-0 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Shoumei Li Ogura, Y. Kreinovich, V. Limit Theorems and Applications of Set-Valued and Fuzzy Set-Valued Random Variables Mathematical Logic and Foundations Probability Theory and Stochastic Processes Measure and Integration Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences Mathematical logic Probabilities Measure theory Statistics Grenzwertsatz (DE-588)4158163-5 gnd Zufallsvariable (DE-588)4129514-6 gnd Fuzzy-Zufallsvariable (DE-588)4201987-4 gnd |
subject_GND | (DE-588)4158163-5 (DE-588)4129514-6 (DE-588)4201987-4 |
title | Limit Theorems and Applications of Set-Valued and Fuzzy Set-Valued Random Variables |
title_auth | Limit Theorems and Applications of Set-Valued and Fuzzy Set-Valued Random Variables |
title_exact_search | Limit Theorems and Applications of Set-Valued and Fuzzy Set-Valued Random Variables |
title_exact_search_txtP | Limit Theorems and Applications of Set-Valued and Fuzzy Set-Valued Random Variables |
title_full | Limit Theorems and Applications of Set-Valued and Fuzzy Set-Valued Random Variables by Shoumei Li, Y. Ogura, V. Kreinovich |
title_fullStr | Limit Theorems and Applications of Set-Valued and Fuzzy Set-Valued Random Variables by Shoumei Li, Y. Ogura, V. Kreinovich |
title_full_unstemmed | Limit Theorems and Applications of Set-Valued and Fuzzy Set-Valued Random Variables by Shoumei Li, Y. Ogura, V. Kreinovich |
title_short | Limit Theorems and Applications of Set-Valued and Fuzzy Set-Valued Random Variables |
title_sort | limit theorems and applications of set valued and fuzzy set valued random variables |
topic | Mathematical Logic and Foundations Probability Theory and Stochastic Processes Measure and Integration Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences Mathematical logic Probabilities Measure theory Statistics Grenzwertsatz (DE-588)4158163-5 gnd Zufallsvariable (DE-588)4129514-6 gnd Fuzzy-Zufallsvariable (DE-588)4201987-4 gnd |
topic_facet | Mathematical Logic and Foundations Probability Theory and Stochastic Processes Measure and Integration Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences Mathematical logic Probabilities Measure theory Statistics Grenzwertsatz Zufallsvariable Fuzzy-Zufallsvariable |
url | https://doi.org/10.1007/978-94-015-9932-0 |
work_keys_str_mv | AT shoumeili limittheoremsandapplicationsofsetvaluedandfuzzysetvaluedrandomvariables AT oguray limittheoremsandapplicationsofsetvaluedandfuzzysetvaluedrandomvariables AT kreinovichv limittheoremsandapplicationsofsetvaluedandfuzzysetvaluedrandomvariables |