Disturbances in the linear model, estimation and hypothesis testing: Estimation and Hypothesis Testing
1. 1. The general linear model All econometric research is based on a set of numerical data relating to certain economic quantities, and makes infer ences from the data about the ways in which these quanti ties are related (Malinvaud 1970, p. 3). The linear relation is frequently encountered in ap...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer US
1978
|
Ausgabe: | 1st ed. 1978 |
Schlagworte: | |
Online-Zugang: | BTU01 URL des Erstveröffentlichers |
Zusammenfassung: | 1. 1. The general linear model All econometric research is based on a set of numerical data relating to certain economic quantities, and makes infer ences from the data about the ways in which these quanti ties are related (Malinvaud 1970, p. 3). The linear relation is frequently encountered in applied econometrics. Let y and x denote two economic quantities, then the linear relation between y and x is formalized by: where {31 and {32 are constants. When {31 and {32 are known numbers, the value of y can be calculated for every given value of x. Here y is the dependent variable and x is the explanatory variable. In practical situations {31 and {32 are unknown. We assume that a set of n observations on y and x is available. When plotting the ob served pairs (x l' YI)' (x ' Y2)' . . . , (x , Y n) into a diagram with x 2 n measured along the horizontal axis and y along the vertical axis it rarely occurs that all points lie on a straight line. Generally, no b 1 and b exist such that Yi = b + b x for i = 1,2, . . . ,n. Unless 2 l 2 i the diagram clearly suggests another type of relation, for instance quadratic or exponential, it is customary to adopt linearity in order to keep the analysis as simple as possible |
Beschreibung: | 1 Online-Ressource (108 p) |
ISBN: | 9781468469561 |
DOI: | 10.1007/978-1-4684-6956-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV046873740 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 200828s1978 |||| o||u| ||||||eng d | ||
020 | |a 9781468469561 |9 978-1-4684-6956-1 | ||
024 | 7 | |a 10.1007/978-1-4684-6956-1 |2 doi | |
035 | |a (ZDB-2-SBE)978-1-4684-6956-1 | ||
035 | |a (OCoLC)1193313504 | ||
035 | |a (DE-599)BVBBV046873740 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
082 | 0 | |a 330 |2 23 | |
084 | |a QH 233 |0 (DE-625)141548: |2 rvk | ||
084 | |a QH 300 |0 (DE-625)141566: |2 rvk | ||
100 | 1 | |a Dubbelman, C. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Disturbances in the linear model, estimation and hypothesis testing |b Estimation and Hypothesis Testing |c by C. Dubbelman |
250 | |a 1st ed. 1978 | ||
264 | 1 | |a New York, NY |b Springer US |c 1978 | |
300 | |a 1 Online-Ressource (108 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a 1. 1. The general linear model All econometric research is based on a set of numerical data relating to certain economic quantities, and makes infer ences from the data about the ways in which these quanti ties are related (Malinvaud 1970, p. 3). The linear relation is frequently encountered in applied econometrics. Let y and x denote two economic quantities, then the linear relation between y and x is formalized by: where {31 and {32 are constants. When {31 and {32 are known numbers, the value of y can be calculated for every given value of x. Here y is the dependent variable and x is the explanatory variable. In practical situations {31 and {32 are unknown. We assume that a set of n observations on y and x is available. When plotting the ob served pairs (x l' YI)' (x ' Y2)' . . . , (x , Y n) into a diagram with x 2 n measured along the horizontal axis and y along the vertical axis it rarely occurs that all points lie on a straight line. Generally, no b 1 and b exist such that Yi = b + b x for i = 1,2, . . . ,n. Unless 2 l 2 i the diagram clearly suggests another type of relation, for instance quadratic or exponential, it is customary to adopt linearity in order to keep the analysis as simple as possible | ||
650 | 4 | |a Economics, general | |
650 | 4 | |a Economics | |
650 | 4 | |a Management science | |
650 | 0 | 7 | |a Testtheorie |0 (DE-588)4131939-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Schätztheorie |0 (DE-588)4121608-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Schätztheorie |0 (DE-588)4121608-8 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Testtheorie |0 (DE-588)4131939-4 |D s |
689 | 1 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789020707724 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780898380941 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781468469578 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4684-6956-1 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SBE |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SBE_Archiv | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032283872 | ||
966 | e | |u https://doi.org/10.1007/978-1-4684-6956-1 |l BTU01 |p ZDB-2-SBE |q ZDB-2-SBE_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181724232417280 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Dubbelman, C. |
author_facet | Dubbelman, C. |
author_role | aut |
author_sort | Dubbelman, C. |
author_variant | c d cd |
building | Verbundindex |
bvnumber | BV046873740 |
classification_rvk | QH 233 QH 300 |
collection | ZDB-2-SBE ZDB-2-BAE |
ctrlnum | (ZDB-2-SBE)978-1-4684-6956-1 (OCoLC)1193313504 (DE-599)BVBBV046873740 |
dewey-full | 330 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 330 - Economics |
dewey-raw | 330 |
dewey-search | 330 |
dewey-sort | 3330 |
dewey-tens | 330 - Economics |
discipline | Wirtschaftswissenschaften |
discipline_str_mv | Wirtschaftswissenschaften |
doi_str_mv | 10.1007/978-1-4684-6956-1 |
edition | 1st ed. 1978 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03132nmm a2200529zc 4500</leader><controlfield tag="001">BV046873740</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200828s1978 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781468469561</subfield><subfield code="9">978-1-4684-6956-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4684-6956-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SBE)978-1-4684-6956-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1193313504</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046873740</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">330</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 233</subfield><subfield code="0">(DE-625)141548:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 300</subfield><subfield code="0">(DE-625)141566:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dubbelman, C.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Disturbances in the linear model, estimation and hypothesis testing</subfield><subfield code="b">Estimation and Hypothesis Testing</subfield><subfield code="c">by C. Dubbelman</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 1978</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer US</subfield><subfield code="c">1978</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (108 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">1. 1. The general linear model All econometric research is based on a set of numerical data relating to certain economic quantities, and makes infer ences from the data about the ways in which these quanti ties are related (Malinvaud 1970, p. 3). The linear relation is frequently encountered in applied econometrics. Let y and x denote two economic quantities, then the linear relation between y and x is formalized by: where {31 and {32 are constants. When {31 and {32 are known numbers, the value of y can be calculated for every given value of x. Here y is the dependent variable and x is the explanatory variable. In practical situations {31 and {32 are unknown. We assume that a set of n observations on y and x is available. When plotting the ob served pairs (x l' YI)' (x ' Y2)' . . . , (x , Y n) into a diagram with x 2 n measured along the horizontal axis and y along the vertical axis it rarely occurs that all points lie on a straight line. Generally, no b 1 and b exist such that Yi = b + b x for i = 1,2, . . . ,n. Unless 2 l 2 i the diagram clearly suggests another type of relation, for instance quadratic or exponential, it is customary to adopt linearity in order to keep the analysis as simple as possible</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Management science</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Testtheorie</subfield><subfield code="0">(DE-588)4131939-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schätztheorie</subfield><subfield code="0">(DE-588)4121608-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Schätztheorie</subfield><subfield code="0">(DE-588)4121608-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Testtheorie</subfield><subfield code="0">(DE-588)4131939-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789020707724</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780898380941</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781468469578</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4684-6956-1</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SBE</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SBE_Archiv</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032283872</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4684-6956-1</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SBE</subfield><subfield code="q">ZDB-2-SBE_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046873740 |
illustrated | Not Illustrated |
index_date | 2024-07-03T15:15:39Z |
indexdate | 2024-07-10T08:56:12Z |
institution | BVB |
isbn | 9781468469561 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032283872 |
oclc_num | 1193313504 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | 1 Online-Ressource (108 p) |
psigel | ZDB-2-SBE ZDB-2-BAE ZDB-2-SBE_Archiv ZDB-2-SBE ZDB-2-SBE_Archiv |
publishDate | 1978 |
publishDateSearch | 1978 |
publishDateSort | 1978 |
publisher | Springer US |
record_format | marc |
spelling | Dubbelman, C. Verfasser aut Disturbances in the linear model, estimation and hypothesis testing Estimation and Hypothesis Testing by C. Dubbelman 1st ed. 1978 New York, NY Springer US 1978 1 Online-Ressource (108 p) txt rdacontent c rdamedia cr rdacarrier 1. 1. The general linear model All econometric research is based on a set of numerical data relating to certain economic quantities, and makes infer ences from the data about the ways in which these quanti ties are related (Malinvaud 1970, p. 3). The linear relation is frequently encountered in applied econometrics. Let y and x denote two economic quantities, then the linear relation between y and x is formalized by: where {31 and {32 are constants. When {31 and {32 are known numbers, the value of y can be calculated for every given value of x. Here y is the dependent variable and x is the explanatory variable. In practical situations {31 and {32 are unknown. We assume that a set of n observations on y and x is available. When plotting the ob served pairs (x l' YI)' (x ' Y2)' . . . , (x , Y n) into a diagram with x 2 n measured along the horizontal axis and y along the vertical axis it rarely occurs that all points lie on a straight line. Generally, no b 1 and b exist such that Yi = b + b x for i = 1,2, . . . ,n. Unless 2 l 2 i the diagram clearly suggests another type of relation, for instance quadratic or exponential, it is customary to adopt linearity in order to keep the analysis as simple as possible Economics, general Economics Management science Testtheorie (DE-588)4131939-4 gnd rswk-swf Schätztheorie (DE-588)4121608-8 gnd rswk-swf Schätztheorie (DE-588)4121608-8 s DE-604 Testtheorie (DE-588)4131939-4 s Erscheint auch als Druck-Ausgabe 9789020707724 Erscheint auch als Druck-Ausgabe 9780898380941 Erscheint auch als Druck-Ausgabe 9781468469578 https://doi.org/10.1007/978-1-4684-6956-1 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Dubbelman, C. Disturbances in the linear model, estimation and hypothesis testing Estimation and Hypothesis Testing Economics, general Economics Management science Testtheorie (DE-588)4131939-4 gnd Schätztheorie (DE-588)4121608-8 gnd |
subject_GND | (DE-588)4131939-4 (DE-588)4121608-8 |
title | Disturbances in the linear model, estimation and hypothesis testing Estimation and Hypothesis Testing |
title_auth | Disturbances in the linear model, estimation and hypothesis testing Estimation and Hypothesis Testing |
title_exact_search | Disturbances in the linear model, estimation and hypothesis testing Estimation and Hypothesis Testing |
title_exact_search_txtP | Disturbances in the linear model, estimation and hypothesis testing Estimation and Hypothesis Testing |
title_full | Disturbances in the linear model, estimation and hypothesis testing Estimation and Hypothesis Testing by C. Dubbelman |
title_fullStr | Disturbances in the linear model, estimation and hypothesis testing Estimation and Hypothesis Testing by C. Dubbelman |
title_full_unstemmed | Disturbances in the linear model, estimation and hypothesis testing Estimation and Hypothesis Testing by C. Dubbelman |
title_short | Disturbances in the linear model, estimation and hypothesis testing |
title_sort | disturbances in the linear model estimation and hypothesis testing estimation and hypothesis testing |
title_sub | Estimation and Hypothesis Testing |
topic | Economics, general Economics Management science Testtheorie (DE-588)4131939-4 gnd Schätztheorie (DE-588)4121608-8 gnd |
topic_facet | Economics, general Economics Management science Testtheorie Schätztheorie |
url | https://doi.org/10.1007/978-1-4684-6956-1 |
work_keys_str_mv | AT dubbelmanc disturbancesinthelinearmodelestimationandhypothesistestingestimationandhypothesistesting |