Basic Geometry of Voting:
A surprise is how the complexities of voting theory can be explained and resolved with the comfortable geometry of our three-dimensional world. This book is directed toward students and others wishing to learn about voting, experts will discover previously unpublished results. As an example, a new p...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1995
|
Ausgabe: | 1st ed. 1995 |
Schlagworte: | |
Online-Zugang: | BTU01 Volltext |
Zusammenfassung: | A surprise is how the complexities of voting theory can be explained and resolved with the comfortable geometry of our three-dimensional world. This book is directed toward students and others wishing to learn about voting, experts will discover previously unpublished results. As an example, a new profile decomposition quickly resolves two centuries old controversies of Condorcet and Borda, demonstrates, that the rankings of pairwise and other methods differ because they rely on different information, casts series doubt on the reliability of a Condorcet winner as a standard for the field, makes the famous Arrow's Theorem predictable, and simplifies the construction of examples. The geometry unifies seemingly disparate topics as manipulation, monotonicity, and even the apportionment issues of the US Supreme Court |
Beschreibung: | 1 Online-Ressource (XII, 300 p) |
ISBN: | 9783642577482 |
DOI: | 10.1007/978-3-642-57748-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV046873158 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 200828s1995 |||| o||u| ||||||eng d | ||
020 | |a 9783642577482 |9 978-3-642-57748-2 | ||
024 | 7 | |a 10.1007/978-3-642-57748-2 |2 doi | |
035 | |a (ZDB-2-SBE)978-3-642-57748-2 | ||
035 | |a (OCoLC)725313943 | ||
035 | |a (DE-599)BVBBV046873158 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
082 | 0 | |a 658.40301 |2 23 | |
084 | |a MF 4100 |0 (DE-625)122713: |2 rvk | ||
084 | |a MF 4800 |0 (DE-625)122728: |2 rvk | ||
084 | |a QC 020 |0 (DE-625)141237: |2 rvk | ||
084 | |a SK 990 |0 (DE-625)143278: |2 rvk | ||
100 | 1 | |a Saari, Donald G. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Basic Geometry of Voting |c by Donald G. Saari |
250 | |a 1st ed. 1995 | ||
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1995 | |
300 | |a 1 Online-Ressource (XII, 300 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a A surprise is how the complexities of voting theory can be explained and resolved with the comfortable geometry of our three-dimensional world. This book is directed toward students and others wishing to learn about voting, experts will discover previously unpublished results. As an example, a new profile decomposition quickly resolves two centuries old controversies of Condorcet and Borda, demonstrates, that the rankings of pairwise and other methods differ because they rely on different information, casts series doubt on the reliability of a Condorcet winner as a standard for the field, makes the famous Arrow's Theorem predictable, and simplifies the construction of examples. The geometry unifies seemingly disparate topics as manipulation, monotonicity, and even the apportionment issues of the US Supreme Court | ||
650 | 4 | |a Operations Research/Decision Theory | |
650 | 4 | |a Economic Theory/Quantitative Economics/Mathematical Methods | |
650 | 4 | |a Operations research | |
650 | 4 | |a Decision making | |
650 | 4 | |a Economic theory | |
650 | 0 | 7 | |a Geometrie |0 (DE-588)4020236-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematisches Modell |0 (DE-588)4114528-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wahlverhalten |0 (DE-588)4079009-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wahlverfahren |0 (DE-588)4188938-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Wahlverhalten |0 (DE-588)4079009-5 |D s |
689 | 0 | 1 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Geometrie |0 (DE-588)4020236-7 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Wahlverfahren |0 (DE-588)4188938-1 |D s |
689 | 2 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783540600640 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783642577499 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-57748-2 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SBE |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SBE_Archiv | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032283290 | ||
966 | e | |u https://doi.org/10.1007/978-3-642-57748-2 |l BTU01 |p ZDB-2-SBE |q ZDB-2-SBE_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181722970980352 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Saari, Donald G. |
author_facet | Saari, Donald G. |
author_role | aut |
author_sort | Saari, Donald G. |
author_variant | d g s dg dgs |
building | Verbundindex |
bvnumber | BV046873158 |
classification_rvk | MF 4100 MF 4800 QC 020 SK 990 |
collection | ZDB-2-SBE ZDB-2-BAE |
ctrlnum | (ZDB-2-SBE)978-3-642-57748-2 (OCoLC)725313943 (DE-599)BVBBV046873158 |
dewey-full | 658.40301 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 658 - General management |
dewey-raw | 658.40301 |
dewey-search | 658.40301 |
dewey-sort | 3658.40301 |
dewey-tens | 650 - Management and auxiliary services |
discipline | Politologie Mathematik Wirtschaftswissenschaften |
discipline_str_mv | Politologie Mathematik Wirtschaftswissenschaften |
doi_str_mv | 10.1007/978-3-642-57748-2 |
edition | 1st ed. 1995 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03108nmm a2200625zc 4500</leader><controlfield tag="001">BV046873158</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200828s1995 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642577482</subfield><subfield code="9">978-3-642-57748-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-57748-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SBE)978-3-642-57748-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)725313943</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046873158</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">658.40301</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MF 4100</subfield><subfield code="0">(DE-625)122713:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MF 4800</subfield><subfield code="0">(DE-625)122728:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QC 020</subfield><subfield code="0">(DE-625)141237:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 990</subfield><subfield code="0">(DE-625)143278:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Saari, Donald G.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Basic Geometry of Voting</subfield><subfield code="c">by Donald G. Saari</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 1995</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 300 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A surprise is how the complexities of voting theory can be explained and resolved with the comfortable geometry of our three-dimensional world. This book is directed toward students and others wishing to learn about voting, experts will discover previously unpublished results. As an example, a new profile decomposition quickly resolves two centuries old controversies of Condorcet and Borda, demonstrates, that the rankings of pairwise and other methods differ because they rely on different information, casts series doubt on the reliability of a Condorcet winner as a standard for the field, makes the famous Arrow's Theorem predictable, and simplifies the construction of examples. The geometry unifies seemingly disparate topics as manipulation, monotonicity, and even the apportionment issues of the US Supreme Court</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations Research/Decision Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economic Theory/Quantitative Economics/Mathematical Methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decision making</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economic theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahlverhalten</subfield><subfield code="0">(DE-588)4079009-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahlverfahren</subfield><subfield code="0">(DE-588)4188938-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wahlverhalten</subfield><subfield code="0">(DE-588)4079009-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Wahlverfahren</subfield><subfield code="0">(DE-588)4188938-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783540600640</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783642577499</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-57748-2</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SBE</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SBE_Archiv</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032283290</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-57748-2</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SBE</subfield><subfield code="q">ZDB-2-SBE_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046873158 |
illustrated | Not Illustrated |
index_date | 2024-07-03T15:15:38Z |
indexdate | 2024-07-10T08:56:11Z |
institution | BVB |
isbn | 9783642577482 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032283290 |
oclc_num | 725313943 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | 1 Online-Ressource (XII, 300 p) |
psigel | ZDB-2-SBE ZDB-2-BAE ZDB-2-SBE_Archiv ZDB-2-SBE ZDB-2-SBE_Archiv |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
spelling | Saari, Donald G. Verfasser aut Basic Geometry of Voting by Donald G. Saari 1st ed. 1995 Berlin, Heidelberg Springer Berlin Heidelberg 1995 1 Online-Ressource (XII, 300 p) txt rdacontent c rdamedia cr rdacarrier A surprise is how the complexities of voting theory can be explained and resolved with the comfortable geometry of our three-dimensional world. This book is directed toward students and others wishing to learn about voting, experts will discover previously unpublished results. As an example, a new profile decomposition quickly resolves two centuries old controversies of Condorcet and Borda, demonstrates, that the rankings of pairwise and other methods differ because they rely on different information, casts series doubt on the reliability of a Condorcet winner as a standard for the field, makes the famous Arrow's Theorem predictable, and simplifies the construction of examples. The geometry unifies seemingly disparate topics as manipulation, monotonicity, and even the apportionment issues of the US Supreme Court Operations Research/Decision Theory Economic Theory/Quantitative Economics/Mathematical Methods Operations research Decision making Economic theory Geometrie (DE-588)4020236-7 gnd rswk-swf Mathematisches Modell (DE-588)4114528-8 gnd rswk-swf Wahlverhalten (DE-588)4079009-5 gnd rswk-swf Wahlverfahren (DE-588)4188938-1 gnd rswk-swf Wahlverhalten (DE-588)4079009-5 s Mathematisches Modell (DE-588)4114528-8 s DE-604 Geometrie (DE-588)4020236-7 s Wahlverfahren (DE-588)4188938-1 s Erscheint auch als Druck-Ausgabe 9783540600640 Erscheint auch als Druck-Ausgabe 9783642577499 https://doi.org/10.1007/978-3-642-57748-2 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Saari, Donald G. Basic Geometry of Voting Operations Research/Decision Theory Economic Theory/Quantitative Economics/Mathematical Methods Operations research Decision making Economic theory Geometrie (DE-588)4020236-7 gnd Mathematisches Modell (DE-588)4114528-8 gnd Wahlverhalten (DE-588)4079009-5 gnd Wahlverfahren (DE-588)4188938-1 gnd |
subject_GND | (DE-588)4020236-7 (DE-588)4114528-8 (DE-588)4079009-5 (DE-588)4188938-1 |
title | Basic Geometry of Voting |
title_auth | Basic Geometry of Voting |
title_exact_search | Basic Geometry of Voting |
title_exact_search_txtP | Basic Geometry of Voting |
title_full | Basic Geometry of Voting by Donald G. Saari |
title_fullStr | Basic Geometry of Voting by Donald G. Saari |
title_full_unstemmed | Basic Geometry of Voting by Donald G. Saari |
title_short | Basic Geometry of Voting |
title_sort | basic geometry of voting |
topic | Operations Research/Decision Theory Economic Theory/Quantitative Economics/Mathematical Methods Operations research Decision making Economic theory Geometrie (DE-588)4020236-7 gnd Mathematisches Modell (DE-588)4114528-8 gnd Wahlverhalten (DE-588)4079009-5 gnd Wahlverfahren (DE-588)4188938-1 gnd |
topic_facet | Operations Research/Decision Theory Economic Theory/Quantitative Economics/Mathematical Methods Operations research Decision making Economic theory Geometrie Mathematisches Modell Wahlverhalten Wahlverfahren |
url | https://doi.org/10.1007/978-3-642-57748-2 |
work_keys_str_mv | AT saaridonaldg basicgeometryofvoting |