Linear Programming: A Modern Integrated Analysis
In Linear Programming: A Modern Integrated Analysis, both boundary (simplex) and interior point methods are derived from the complementary slackness theorem and, unlike most books, the duality theorem is derived from Farkas's Lemma, which is proved as a convex separation theorem. The tedium of...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer US
1995
|
Ausgabe: | 1st ed. 1995 |
Schriftenreihe: | International Series in Operations Research & Management Science
1 |
Schlagworte: | |
Online-Zugang: | BTU01 Volltext |
Zusammenfassung: | In Linear Programming: A Modern Integrated Analysis, both boundary (simplex) and interior point methods are derived from the complementary slackness theorem and, unlike most books, the duality theorem is derived from Farkas's Lemma, which is proved as a convex separation theorem. The tedium of the simplex method is thus avoided. A new and inductive proof of Kantorovich's Theorem is offered, related to the convergence of Newton's method. Of the boundary methods, the book presents the (revised) primal and the dual simplex methods. An extensive discussion is given of the primal, dual and primal-dual affine scaling methods. In addition, the proof of the convergence under degeneracy, a bounded variable variant, and a super-linearly convergent variant of the primal affine scaling method are covered in one chapter. Polynomial barrier or path-following homotopy methods, and the projective transformation method are also covered in the interior point chapter. Besides the popular sparse Cholesky factorization and the conjugate gradient method, new methods are presented in a separate chapter on implementation. These methods use LQ factorization and iterative techniques |
Beschreibung: | 1 Online-Ressource (XIII, 342 p) |
ISBN: | 9781461523116 |
DOI: | 10.1007/978-1-4615-2311-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV046873092 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 200828s1995 |||| o||u| ||||||eng d | ||
020 | |a 9781461523116 |9 978-1-4615-2311-6 | ||
024 | 7 | |a 10.1007/978-1-4615-2311-6 |2 doi | |
035 | |a (ZDB-2-SBE)978-1-4615-2311-6 | ||
035 | |a (OCoLC)903189942 | ||
035 | |a (DE-599)BVBBV046873092 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
082 | 0 | |a 658.40301 |2 23 | |
084 | |a QH 421 |0 (DE-625)141575: |2 rvk | ||
084 | |a SK 870 |0 (DE-625)143265: |2 rvk | ||
100 | 1 | |a Saigal, Romesh |e Verfasser |4 aut | |
245 | 1 | 0 | |a Linear Programming |b A Modern Integrated Analysis |c by Romesh Saigal |
250 | |a 1st ed. 1995 | ||
264 | 1 | |a New York, NY |b Springer US |c 1995 | |
300 | |a 1 Online-Ressource (XIII, 342 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a International Series in Operations Research & Management Science |v 1 | |
520 | |a In Linear Programming: A Modern Integrated Analysis, both boundary (simplex) and interior point methods are derived from the complementary slackness theorem and, unlike most books, the duality theorem is derived from Farkas's Lemma, which is proved as a convex separation theorem. The tedium of the simplex method is thus avoided. A new and inductive proof of Kantorovich's Theorem is offered, related to the convergence of Newton's method. Of the boundary methods, the book presents the (revised) primal and the dual simplex methods. An extensive discussion is given of the primal, dual and primal-dual affine scaling methods. In addition, the proof of the convergence under degeneracy, a bounded variable variant, and a super-linearly convergent variant of the primal affine scaling method are covered in one chapter. Polynomial barrier or path-following homotopy methods, and the projective transformation method are also covered in the interior point chapter. Besides the popular sparse Cholesky factorization and the conjugate gradient method, new methods are presented in a separate chapter on implementation. These methods use LQ factorization and iterative techniques | ||
650 | 4 | |a Operations Research/Decision Theory | |
650 | 4 | |a Mathematical Modeling and Industrial Mathematics | |
650 | 4 | |a Optimization | |
650 | 4 | |a Calculus of Variations and Optimal Control; Optimization | |
650 | 4 | |a Operations research | |
650 | 4 | |a Decision making | |
650 | 4 | |a Mathematical models | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Calculus of variations | |
650 | 0 | 7 | |a Lineare Optimierung |0 (DE-588)4035816-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lineare Optimierung |0 (DE-588)4035816-1 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781461359777 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780792396222 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781461523123 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4615-2311-6 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SBE |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SBE_Archiv | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032283224 | ||
966 | e | |u https://doi.org/10.1007/978-1-4615-2311-6 |l BTU01 |p ZDB-2-SBE |q ZDB-2-SBE_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181722829422592 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Saigal, Romesh |
author_facet | Saigal, Romesh |
author_role | aut |
author_sort | Saigal, Romesh |
author_variant | r s rs |
building | Verbundindex |
bvnumber | BV046873092 |
classification_rvk | QH 421 SK 870 |
collection | ZDB-2-SBE ZDB-2-BAE |
ctrlnum | (ZDB-2-SBE)978-1-4615-2311-6 (OCoLC)903189942 (DE-599)BVBBV046873092 |
dewey-full | 658.40301 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 658 - General management |
dewey-raw | 658.40301 |
dewey-search | 658.40301 |
dewey-sort | 3658.40301 |
dewey-tens | 650 - Management and auxiliary services |
discipline | Mathematik Wirtschaftswissenschaften |
discipline_str_mv | Mathematik Wirtschaftswissenschaften |
doi_str_mv | 10.1007/978-1-4615-2311-6 |
edition | 1st ed. 1995 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03303nmm a2200577zcb4500</leader><controlfield tag="001">BV046873092</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200828s1995 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461523116</subfield><subfield code="9">978-1-4615-2311-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4615-2311-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SBE)978-1-4615-2311-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)903189942</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046873092</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">658.40301</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 421</subfield><subfield code="0">(DE-625)141575:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 870</subfield><subfield code="0">(DE-625)143265:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Saigal, Romesh</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Linear Programming</subfield><subfield code="b">A Modern Integrated Analysis</subfield><subfield code="c">by Romesh Saigal</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 1995</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer US</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIII, 342 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">International Series in Operations Research & Management Science</subfield><subfield code="v">1</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In Linear Programming: A Modern Integrated Analysis, both boundary (simplex) and interior point methods are derived from the complementary slackness theorem and, unlike most books, the duality theorem is derived from Farkas's Lemma, which is proved as a convex separation theorem. The tedium of the simplex method is thus avoided. A new and inductive proof of Kantorovich's Theorem is offered, related to the convergence of Newton's method. Of the boundary methods, the book presents the (revised) primal and the dual simplex methods. An extensive discussion is given of the primal, dual and primal-dual affine scaling methods. In addition, the proof of the convergence under degeneracy, a bounded variable variant, and a super-linearly convergent variant of the primal affine scaling method are covered in one chapter. Polynomial barrier or path-following homotopy methods, and the projective transformation method are also covered in the interior point chapter. Besides the popular sparse Cholesky factorization and the conjugate gradient method, new methods are presented in a separate chapter on implementation. These methods use LQ factorization and iterative techniques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations Research/Decision Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Modeling and Industrial Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of Variations and Optimal Control; Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decision making</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of variations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare Optimierung</subfield><subfield code="0">(DE-588)4035816-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lineare Optimierung</subfield><subfield code="0">(DE-588)4035816-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781461359777</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780792396222</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781461523123</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4615-2311-6</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SBE</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SBE_Archiv</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032283224</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4615-2311-6</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SBE</subfield><subfield code="q">ZDB-2-SBE_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046873092 |
illustrated | Not Illustrated |
index_date | 2024-07-03T15:15:38Z |
indexdate | 2024-07-10T08:56:11Z |
institution | BVB |
isbn | 9781461523116 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032283224 |
oclc_num | 903189942 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | 1 Online-Ressource (XIII, 342 p) |
psigel | ZDB-2-SBE ZDB-2-BAE ZDB-2-SBE_Archiv ZDB-2-SBE ZDB-2-SBE_Archiv |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Springer US |
record_format | marc |
series2 | International Series in Operations Research & Management Science |
spelling | Saigal, Romesh Verfasser aut Linear Programming A Modern Integrated Analysis by Romesh Saigal 1st ed. 1995 New York, NY Springer US 1995 1 Online-Ressource (XIII, 342 p) txt rdacontent c rdamedia cr rdacarrier International Series in Operations Research & Management Science 1 In Linear Programming: A Modern Integrated Analysis, both boundary (simplex) and interior point methods are derived from the complementary slackness theorem and, unlike most books, the duality theorem is derived from Farkas's Lemma, which is proved as a convex separation theorem. The tedium of the simplex method is thus avoided. A new and inductive proof of Kantorovich's Theorem is offered, related to the convergence of Newton's method. Of the boundary methods, the book presents the (revised) primal and the dual simplex methods. An extensive discussion is given of the primal, dual and primal-dual affine scaling methods. In addition, the proof of the convergence under degeneracy, a bounded variable variant, and a super-linearly convergent variant of the primal affine scaling method are covered in one chapter. Polynomial barrier or path-following homotopy methods, and the projective transformation method are also covered in the interior point chapter. Besides the popular sparse Cholesky factorization and the conjugate gradient method, new methods are presented in a separate chapter on implementation. These methods use LQ factorization and iterative techniques Operations Research/Decision Theory Mathematical Modeling and Industrial Mathematics Optimization Calculus of Variations and Optimal Control; Optimization Operations research Decision making Mathematical models Mathematical optimization Calculus of variations Lineare Optimierung (DE-588)4035816-1 gnd rswk-swf Lineare Optimierung (DE-588)4035816-1 s DE-604 Erscheint auch als Druck-Ausgabe 9781461359777 Erscheint auch als Druck-Ausgabe 9780792396222 Erscheint auch als Druck-Ausgabe 9781461523123 https://doi.org/10.1007/978-1-4615-2311-6 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Saigal, Romesh Linear Programming A Modern Integrated Analysis Operations Research/Decision Theory Mathematical Modeling and Industrial Mathematics Optimization Calculus of Variations and Optimal Control; Optimization Operations research Decision making Mathematical models Mathematical optimization Calculus of variations Lineare Optimierung (DE-588)4035816-1 gnd |
subject_GND | (DE-588)4035816-1 |
title | Linear Programming A Modern Integrated Analysis |
title_auth | Linear Programming A Modern Integrated Analysis |
title_exact_search | Linear Programming A Modern Integrated Analysis |
title_exact_search_txtP | Linear Programming A Modern Integrated Analysis |
title_full | Linear Programming A Modern Integrated Analysis by Romesh Saigal |
title_fullStr | Linear Programming A Modern Integrated Analysis by Romesh Saigal |
title_full_unstemmed | Linear Programming A Modern Integrated Analysis by Romesh Saigal |
title_short | Linear Programming |
title_sort | linear programming a modern integrated analysis |
title_sub | A Modern Integrated Analysis |
topic | Operations Research/Decision Theory Mathematical Modeling and Industrial Mathematics Optimization Calculus of Variations and Optimal Control; Optimization Operations research Decision making Mathematical models Mathematical optimization Calculus of variations Lineare Optimierung (DE-588)4035816-1 gnd |
topic_facet | Operations Research/Decision Theory Mathematical Modeling and Industrial Mathematics Optimization Calculus of Variations and Optimal Control; Optimization Operations research Decision making Mathematical models Mathematical optimization Calculus of variations Lineare Optimierung |
url | https://doi.org/10.1007/978-1-4615-2311-6 |
work_keys_str_mv | AT saigalromesh linearprogrammingamodernintegratedanalysis |