Reproducing Kernel Hilbert Spaces in Probability and Statistics:
The reproducing kernel Hilbert space construction is a bijection or transform theory which associates a positive definite kernel (gaussian processes) with a Hilbert space offunctions. Like all transform theories (think Fourier), problems in one space may become transparent in the other, and optimal...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer US
2004
|
Ausgabe: | 1st ed. 2004 |
Schlagworte: | |
Online-Zugang: | BTU01 Volltext |
Zusammenfassung: | The reproducing kernel Hilbert space construction is a bijection or transform theory which associates a positive definite kernel (gaussian processes) with a Hilbert space offunctions. Like all transform theories (think Fourier), problems in one space may become transparent in the other, and optimal solutions in one space are often usefully optimal in the other. The theory was born in complex function theory, abstracted and then accidently injected into Statistics; Manny Parzen as a graduate student at Berkeley was given a strip of paper containing his qualifying exam problem- It read "reproducing kernel Hilbert space"- In the 1950's this was a truly obscure topic. Parzen tracked it down and internalized the subject. Soon after, he applied it to problems with the following fla vor: consider estimating the mean functions of a gaussian process. The mean functions which cannot be distinguished with probability one are precisely the functions in the Hilbert space associated to the covariance kernel of the processes. Parzen's own lively account of his work on re producing kernels is charmingly told in his interview with H. Joseph Newton in Statistical Science, 17, 2002, p. 364-366. Parzen moved to Stanford and his infectious enthusiasm caught Jerry Sacks, Don Ylvisaker and Grace Wahba among others. Sacks and Ylvis aker applied the ideas to design problems such as the following. Sup pose (XdO. |
Beschreibung: | 1 Online-Ressource (XXII, 355 p) |
ISBN: | 9781441990969 |
DOI: | 10.1007/978-1-4419-9096-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV046873040 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 200828s2004 |||| o||u| ||||||eng d | ||
020 | |a 9781441990969 |9 978-1-4419-9096-9 | ||
024 | 7 | |a 10.1007/978-1-4419-9096-9 |2 doi | |
035 | |a (ZDB-2-SBE)978-1-4419-9096-9 | ||
035 | |a (OCoLC)725335996 | ||
035 | |a (DE-599)BVBBV046873040 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
082 | 0 | |a 330 |2 23 | |
084 | |a QH 233 |0 (DE-625)141548: |2 rvk | ||
084 | |a SK 470 |0 (DE-625)143241: |2 rvk | ||
084 | |a SK 820 |0 (DE-625)143258: |2 rvk | ||
100 | 1 | |a Berlinet, Alain |e Verfasser |4 aut | |
245 | 1 | 0 | |a Reproducing Kernel Hilbert Spaces in Probability and Statistics |c by Alain Berlinet, Christine Thomas-Agnan |
250 | |a 1st ed. 2004 | ||
264 | 1 | |a New York, NY |b Springer US |c 2004 | |
300 | |a 1 Online-Ressource (XXII, 355 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a The reproducing kernel Hilbert space construction is a bijection or transform theory which associates a positive definite kernel (gaussian processes) with a Hilbert space offunctions. Like all transform theories (think Fourier), problems in one space may become transparent in the other, and optimal solutions in one space are often usefully optimal in the other. The theory was born in complex function theory, abstracted and then accidently injected into Statistics; Manny Parzen as a graduate student at Berkeley was given a strip of paper containing his qualifying exam problem- It read "reproducing kernel Hilbert space"- In the 1950's this was a truly obscure topic. Parzen tracked it down and internalized the subject. Soon after, he applied it to problems with the following fla vor: consider estimating the mean functions of a gaussian process. The mean functions which cannot be distinguished with probability one are precisely the functions in the Hilbert space associated to the covariance kernel of the processes. Parzen's own lively account of his work on re producing kernels is charmingly told in his interview with H. Joseph Newton in Statistical Science, 17, 2002, p. 364-366. Parzen moved to Stanford and his infectious enthusiasm caught Jerry Sacks, Don Ylvisaker and Grace Wahba among others. Sacks and Ylvis aker applied the ideas to design problems such as the following. Sup pose (XdO. | ||
650 | 4 | |a Economics, general | |
650 | 4 | |a Statistics for Business, Management, Economics, Finance, Insurance | |
650 | 4 | |a Economic Theory/Quantitative Economics/Mathematical Methods | |
650 | 4 | |a Economics | |
650 | 4 | |a Management science | |
650 | 4 | |a Statistics | |
650 | 4 | |a Economic theory | |
650 | 0 | 7 | |a Statistik |0 (DE-588)4056995-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kernfunktion |0 (DE-588)4163607-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hilbert-Raum |0 (DE-588)4159850-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hilbert-Raum |0 (DE-588)4159850-7 |D s |
689 | 0 | 1 | |a Kernfunktion |0 (DE-588)4163607-7 |D s |
689 | 0 | 2 | |a Statistik |0 (DE-588)4056995-0 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Thomas-Agnan, Christine |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781461347927 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781402076794 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781441990976 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4419-9096-9 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SBE |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SBE_Archiv | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032283172 | ||
966 | e | |u https://doi.org/10.1007/978-1-4419-9096-9 |l BTU01 |p ZDB-2-SBE |q ZDB-2-SBE_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181722716176384 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Berlinet, Alain Thomas-Agnan, Christine |
author_facet | Berlinet, Alain Thomas-Agnan, Christine |
author_role | aut aut |
author_sort | Berlinet, Alain |
author_variant | a b ab c t a cta |
building | Verbundindex |
bvnumber | BV046873040 |
classification_rvk | QH 233 SK 470 SK 820 |
collection | ZDB-2-SBE ZDB-2-BAE |
ctrlnum | (ZDB-2-SBE)978-1-4419-9096-9 (OCoLC)725335996 (DE-599)BVBBV046873040 |
dewey-full | 330 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 330 - Economics |
dewey-raw | 330 |
dewey-search | 330 |
dewey-sort | 3330 |
dewey-tens | 330 - Economics |
discipline | Mathematik Wirtschaftswissenschaften |
discipline_str_mv | Mathematik Wirtschaftswissenschaften |
doi_str_mv | 10.1007/978-1-4419-9096-9 |
edition | 1st ed. 2004 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03706nmm a2200613zc 4500</leader><controlfield tag="001">BV046873040</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200828s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441990969</subfield><subfield code="9">978-1-4419-9096-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4419-9096-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SBE)978-1-4419-9096-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)725335996</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046873040</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">330</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 233</subfield><subfield code="0">(DE-625)141548:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 470</subfield><subfield code="0">(DE-625)143241:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Berlinet, Alain</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Reproducing Kernel Hilbert Spaces in Probability and Statistics</subfield><subfield code="c">by Alain Berlinet, Christine Thomas-Agnan</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 2004</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer US</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXII, 355 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The reproducing kernel Hilbert space construction is a bijection or transform theory which associates a positive definite kernel (gaussian processes) with a Hilbert space offunctions. Like all transform theories (think Fourier), problems in one space may become transparent in the other, and optimal solutions in one space are often usefully optimal in the other. The theory was born in complex function theory, abstracted and then accidently injected into Statistics; Manny Parzen as a graduate student at Berkeley was given a strip of paper containing his qualifying exam problem- It read "reproducing kernel Hilbert space"- In the 1950's this was a truly obscure topic. Parzen tracked it down and internalized the subject. Soon after, he applied it to problems with the following fla vor: consider estimating the mean functions of a gaussian process. The mean functions which cannot be distinguished with probability one are precisely the functions in the Hilbert space associated to the covariance kernel of the processes. Parzen's own lively account of his work on re producing kernels is charmingly told in his interview with H. Joseph Newton in Statistical Science, 17, 2002, p. 364-366. Parzen moved to Stanford and his infectious enthusiasm caught Jerry Sacks, Don Ylvisaker and Grace Wahba among others. Sacks and Ylvis aker applied the ideas to design problems such as the following. Sup pose (XdO.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics for Business, Management, Economics, Finance, Insurance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economic Theory/Quantitative Economics/Mathematical Methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Management science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics </subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economic theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kernfunktion</subfield><subfield code="0">(DE-588)4163607-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hilbert-Raum</subfield><subfield code="0">(DE-588)4159850-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hilbert-Raum</subfield><subfield code="0">(DE-588)4159850-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kernfunktion</subfield><subfield code="0">(DE-588)4163607-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Thomas-Agnan, Christine</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781461347927</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781402076794</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781441990976</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4419-9096-9</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SBE</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SBE_Archiv</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032283172</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4419-9096-9</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SBE</subfield><subfield code="q">ZDB-2-SBE_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046873040 |
illustrated | Not Illustrated |
index_date | 2024-07-03T15:15:38Z |
indexdate | 2024-07-10T08:56:11Z |
institution | BVB |
isbn | 9781441990969 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032283172 |
oclc_num | 725335996 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | 1 Online-Ressource (XXII, 355 p) |
psigel | ZDB-2-SBE ZDB-2-BAE ZDB-2-SBE_Archiv ZDB-2-SBE ZDB-2-SBE_Archiv |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Springer US |
record_format | marc |
spelling | Berlinet, Alain Verfasser aut Reproducing Kernel Hilbert Spaces in Probability and Statistics by Alain Berlinet, Christine Thomas-Agnan 1st ed. 2004 New York, NY Springer US 2004 1 Online-Ressource (XXII, 355 p) txt rdacontent c rdamedia cr rdacarrier The reproducing kernel Hilbert space construction is a bijection or transform theory which associates a positive definite kernel (gaussian processes) with a Hilbert space offunctions. Like all transform theories (think Fourier), problems in one space may become transparent in the other, and optimal solutions in one space are often usefully optimal in the other. The theory was born in complex function theory, abstracted and then accidently injected into Statistics; Manny Parzen as a graduate student at Berkeley was given a strip of paper containing his qualifying exam problem- It read "reproducing kernel Hilbert space"- In the 1950's this was a truly obscure topic. Parzen tracked it down and internalized the subject. Soon after, he applied it to problems with the following fla vor: consider estimating the mean functions of a gaussian process. The mean functions which cannot be distinguished with probability one are precisely the functions in the Hilbert space associated to the covariance kernel of the processes. Parzen's own lively account of his work on re producing kernels is charmingly told in his interview with H. Joseph Newton in Statistical Science, 17, 2002, p. 364-366. Parzen moved to Stanford and his infectious enthusiasm caught Jerry Sacks, Don Ylvisaker and Grace Wahba among others. Sacks and Ylvis aker applied the ideas to design problems such as the following. Sup pose (XdO. Economics, general Statistics for Business, Management, Economics, Finance, Insurance Economic Theory/Quantitative Economics/Mathematical Methods Economics Management science Statistics Economic theory Statistik (DE-588)4056995-0 gnd rswk-swf Kernfunktion (DE-588)4163607-7 gnd rswk-swf Hilbert-Raum (DE-588)4159850-7 gnd rswk-swf Hilbert-Raum (DE-588)4159850-7 s Kernfunktion (DE-588)4163607-7 s Statistik (DE-588)4056995-0 s DE-604 Thomas-Agnan, Christine aut Erscheint auch als Druck-Ausgabe 9781461347927 Erscheint auch als Druck-Ausgabe 9781402076794 Erscheint auch als Druck-Ausgabe 9781441990976 https://doi.org/10.1007/978-1-4419-9096-9 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Berlinet, Alain Thomas-Agnan, Christine Reproducing Kernel Hilbert Spaces in Probability and Statistics Economics, general Statistics for Business, Management, Economics, Finance, Insurance Economic Theory/Quantitative Economics/Mathematical Methods Economics Management science Statistics Economic theory Statistik (DE-588)4056995-0 gnd Kernfunktion (DE-588)4163607-7 gnd Hilbert-Raum (DE-588)4159850-7 gnd |
subject_GND | (DE-588)4056995-0 (DE-588)4163607-7 (DE-588)4159850-7 |
title | Reproducing Kernel Hilbert Spaces in Probability and Statistics |
title_auth | Reproducing Kernel Hilbert Spaces in Probability and Statistics |
title_exact_search | Reproducing Kernel Hilbert Spaces in Probability and Statistics |
title_exact_search_txtP | Reproducing Kernel Hilbert Spaces in Probability and Statistics |
title_full | Reproducing Kernel Hilbert Spaces in Probability and Statistics by Alain Berlinet, Christine Thomas-Agnan |
title_fullStr | Reproducing Kernel Hilbert Spaces in Probability and Statistics by Alain Berlinet, Christine Thomas-Agnan |
title_full_unstemmed | Reproducing Kernel Hilbert Spaces in Probability and Statistics by Alain Berlinet, Christine Thomas-Agnan |
title_short | Reproducing Kernel Hilbert Spaces in Probability and Statistics |
title_sort | reproducing kernel hilbert spaces in probability and statistics |
topic | Economics, general Statistics for Business, Management, Economics, Finance, Insurance Economic Theory/Quantitative Economics/Mathematical Methods Economics Management science Statistics Economic theory Statistik (DE-588)4056995-0 gnd Kernfunktion (DE-588)4163607-7 gnd Hilbert-Raum (DE-588)4159850-7 gnd |
topic_facet | Economics, general Statistics for Business, Management, Economics, Finance, Insurance Economic Theory/Quantitative Economics/Mathematical Methods Economics Management science Statistics Economic theory Statistik Kernfunktion Hilbert-Raum |
url | https://doi.org/10.1007/978-1-4419-9096-9 |
work_keys_str_mv | AT berlinetalain reproducingkernelhilbertspacesinprobabilityandstatistics AT thomasagnanchristine reproducingkernelhilbertspacesinprobabilityandstatistics |