Nondifferentiable and Two-Level Mathematical Programming:
The analysis and design of engineering and industrial systems has come to rely heavily on the use of optimization techniques. The theory developed over the last 40 years, coupled with an increasing number of powerful computational procedures, has made it possible to routinely solve problems arising...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer US
1997
|
Ausgabe: | 1st ed. 1997 |
Schlagworte: | |
Online-Zugang: | BTU01 Volltext |
Zusammenfassung: | The analysis and design of engineering and industrial systems has come to rely heavily on the use of optimization techniques. The theory developed over the last 40 years, coupled with an increasing number of powerful computational procedures, has made it possible to routinely solve problems arising in such diverse fields as aircraft design, material flow, curve fitting, capital expansion, and oil refining just to name a few. Mathematical programming plays a central role in each of these areas and can be considered the primary tool for systems optimization. Limits have been placed on the types of problems that can be solved, though, by the difficulty of handling functions that are not everywhere differentiable. To deal with real applications, it is often necessary to be able to optimize functions that while continuous are not differentiable in the classical sense. As the title of the book indicates, our chief concern is with (i) nondifferentiable mathematical programs, and (ii) two-level optimization problems. In the first half of the book, we study basic theory for general smooth and nonsmooth functions of many variables. After providing some background, we extend traditional (differentiable) nonlinear programming to the nondifferentiable case. The term used for the resultant problem is nondifferentiable mathematical programming. The major focus is on the derivation of optimality conditions for general nondifferentiable nonlinear programs. We introduce the concept of the generalized gradient and derive Kuhn-Tucker-type optimality conditions for the corresponding formulations |
Beschreibung: | 1 Online-Ressource (XII, 470 p) |
ISBN: | 9781461563051 |
DOI: | 10.1007/978-1-4615-6305-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV046872434 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 200828s1997 |||| o||u| ||||||eng d | ||
020 | |a 9781461563051 |9 978-1-4615-6305-1 | ||
024 | 7 | |a 10.1007/978-1-4615-6305-1 |2 doi | |
035 | |a (ZDB-2-SBE)978-1-4615-6305-1 | ||
035 | |a (OCoLC)903194830 | ||
035 | |a (DE-599)BVBBV046872434 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
082 | 0 | |a 658.40301 |2 23 | |
084 | |a SK 870 |0 (DE-625)143265: |2 rvk | ||
100 | 1 | |a Shimizu, Kiyotaka |e Verfasser |4 aut | |
245 | 1 | 0 | |a Nondifferentiable and Two-Level Mathematical Programming |c by Kiyotaka Shimizu, Yo Ishizuka, Jonathan F. Bard |
250 | |a 1st ed. 1997 | ||
264 | 1 | |a New York, NY |b Springer US |c 1997 | |
300 | |a 1 Online-Ressource (XII, 470 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a The analysis and design of engineering and industrial systems has come to rely heavily on the use of optimization techniques. The theory developed over the last 40 years, coupled with an increasing number of powerful computational procedures, has made it possible to routinely solve problems arising in such diverse fields as aircraft design, material flow, curve fitting, capital expansion, and oil refining just to name a few. Mathematical programming plays a central role in each of these areas and can be considered the primary tool for systems optimization. Limits have been placed on the types of problems that can be solved, though, by the difficulty of handling functions that are not everywhere differentiable. To deal with real applications, it is often necessary to be able to optimize functions that while continuous are not differentiable in the classical sense. As the title of the book indicates, our chief concern is with (i) nondifferentiable mathematical programs, and (ii) two-level optimization problems. In the first half of the book, we study basic theory for general smooth and nonsmooth functions of many variables. After providing some background, we extend traditional (differentiable) nonlinear programming to the nondifferentiable case. The term used for the resultant problem is nondifferentiable mathematical programming. The major focus is on the derivation of optimality conditions for general nondifferentiable nonlinear programs. We introduce the concept of the generalized gradient and derive Kuhn-Tucker-type optimality conditions for the corresponding formulations | ||
650 | 4 | |a Operations Research/Decision Theory | |
650 | 4 | |a Systems Theory, Control | |
650 | 4 | |a Mathematical Modeling and Industrial Mathematics | |
650 | 4 | |a Operations research | |
650 | 4 | |a Decision making | |
650 | 4 | |a System theory | |
650 | 4 | |a Mathematical models | |
650 | 0 | 7 | |a Nichtdifferenzierbare Funktion |0 (DE-588)4326748-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Optimierung |0 (DE-588)4043664-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lineare Optimierung |0 (DE-588)4035816-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nichtdifferenzierbare Funktion |0 (DE-588)4326748-8 |D s |
689 | 0 | 1 | |a Optimierung |0 (DE-588)4043664-0 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Lineare Optimierung |0 (DE-588)4035816-1 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Ishizuka, Yo |4 aut | |
700 | 1 | |a Bard, Jonathan F. |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780792398219 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781461378952 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781461563068 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4615-6305-1 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SBE |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SBE_Archiv | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032282566 | ||
966 | e | |u https://doi.org/10.1007/978-1-4615-6305-1 |l BTU01 |p ZDB-2-SBE |q ZDB-2-SBE_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181721387630592 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Shimizu, Kiyotaka Ishizuka, Yo Bard, Jonathan F. |
author_facet | Shimizu, Kiyotaka Ishizuka, Yo Bard, Jonathan F. |
author_role | aut aut aut |
author_sort | Shimizu, Kiyotaka |
author_variant | k s ks y i yi j f b jf jfb |
building | Verbundindex |
bvnumber | BV046872434 |
classification_rvk | SK 870 |
collection | ZDB-2-SBE ZDB-2-BAE |
ctrlnum | (ZDB-2-SBE)978-1-4615-6305-1 (OCoLC)903194830 (DE-599)BVBBV046872434 |
dewey-full | 658.40301 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 658 - General management |
dewey-raw | 658.40301 |
dewey-search | 658.40301 |
dewey-sort | 3658.40301 |
dewey-tens | 650 - Management and auxiliary services |
discipline | Mathematik Wirtschaftswissenschaften |
discipline_str_mv | Mathematik Wirtschaftswissenschaften |
doi_str_mv | 10.1007/978-1-4615-6305-1 |
edition | 1st ed. 1997 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03889nmm a2200613zc 4500</leader><controlfield tag="001">BV046872434</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200828s1997 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461563051</subfield><subfield code="9">978-1-4615-6305-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4615-6305-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SBE)978-1-4615-6305-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)903194830</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046872434</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">658.40301</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 870</subfield><subfield code="0">(DE-625)143265:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shimizu, Kiyotaka</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nondifferentiable and Two-Level Mathematical Programming</subfield><subfield code="c">by Kiyotaka Shimizu, Yo Ishizuka, Jonathan F. Bard</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 1997</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer US</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 470 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The analysis and design of engineering and industrial systems has come to rely heavily on the use of optimization techniques. The theory developed over the last 40 years, coupled with an increasing number of powerful computational procedures, has made it possible to routinely solve problems arising in such diverse fields as aircraft design, material flow, curve fitting, capital expansion, and oil refining just to name a few. Mathematical programming plays a central role in each of these areas and can be considered the primary tool for systems optimization. Limits have been placed on the types of problems that can be solved, though, by the difficulty of handling functions that are not everywhere differentiable. To deal with real applications, it is often necessary to be able to optimize functions that while continuous are not differentiable in the classical sense. As the title of the book indicates, our chief concern is with (i) nondifferentiable mathematical programs, and (ii) two-level optimization problems. In the first half of the book, we study basic theory for general smooth and nonsmooth functions of many variables. After providing some background, we extend traditional (differentiable) nonlinear programming to the nondifferentiable case. The term used for the resultant problem is nondifferentiable mathematical programming. The major focus is on the derivation of optimality conditions for general nondifferentiable nonlinear programs. We introduce the concept of the generalized gradient and derive Kuhn-Tucker-type optimality conditions for the corresponding formulations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations Research/Decision Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systems Theory, Control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Modeling and Industrial Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decision making</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">System theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical models</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtdifferenzierbare Funktion</subfield><subfield code="0">(DE-588)4326748-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optimierung</subfield><subfield code="0">(DE-588)4043664-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare Optimierung</subfield><subfield code="0">(DE-588)4035816-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtdifferenzierbare Funktion</subfield><subfield code="0">(DE-588)4326748-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Optimierung</subfield><subfield code="0">(DE-588)4043664-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Lineare Optimierung</subfield><subfield code="0">(DE-588)4035816-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ishizuka, Yo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bard, Jonathan F.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780792398219</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781461378952</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781461563068</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4615-6305-1</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SBE</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SBE_Archiv</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032282566</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4615-6305-1</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SBE</subfield><subfield code="q">ZDB-2-SBE_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046872434 |
illustrated | Not Illustrated |
index_date | 2024-07-03T15:15:37Z |
indexdate | 2024-07-10T08:56:09Z |
institution | BVB |
isbn | 9781461563051 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032282566 |
oclc_num | 903194830 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | 1 Online-Ressource (XII, 470 p) |
psigel | ZDB-2-SBE ZDB-2-BAE ZDB-2-SBE_Archiv ZDB-2-SBE ZDB-2-SBE_Archiv |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Springer US |
record_format | marc |
spelling | Shimizu, Kiyotaka Verfasser aut Nondifferentiable and Two-Level Mathematical Programming by Kiyotaka Shimizu, Yo Ishizuka, Jonathan F. Bard 1st ed. 1997 New York, NY Springer US 1997 1 Online-Ressource (XII, 470 p) txt rdacontent c rdamedia cr rdacarrier The analysis and design of engineering and industrial systems has come to rely heavily on the use of optimization techniques. The theory developed over the last 40 years, coupled with an increasing number of powerful computational procedures, has made it possible to routinely solve problems arising in such diverse fields as aircraft design, material flow, curve fitting, capital expansion, and oil refining just to name a few. Mathematical programming plays a central role in each of these areas and can be considered the primary tool for systems optimization. Limits have been placed on the types of problems that can be solved, though, by the difficulty of handling functions that are not everywhere differentiable. To deal with real applications, it is often necessary to be able to optimize functions that while continuous are not differentiable in the classical sense. As the title of the book indicates, our chief concern is with (i) nondifferentiable mathematical programs, and (ii) two-level optimization problems. In the first half of the book, we study basic theory for general smooth and nonsmooth functions of many variables. After providing some background, we extend traditional (differentiable) nonlinear programming to the nondifferentiable case. The term used for the resultant problem is nondifferentiable mathematical programming. The major focus is on the derivation of optimality conditions for general nondifferentiable nonlinear programs. We introduce the concept of the generalized gradient and derive Kuhn-Tucker-type optimality conditions for the corresponding formulations Operations Research/Decision Theory Systems Theory, Control Mathematical Modeling and Industrial Mathematics Operations research Decision making System theory Mathematical models Nichtdifferenzierbare Funktion (DE-588)4326748-8 gnd rswk-swf Optimierung (DE-588)4043664-0 gnd rswk-swf Lineare Optimierung (DE-588)4035816-1 gnd rswk-swf Nichtdifferenzierbare Funktion (DE-588)4326748-8 s Optimierung (DE-588)4043664-0 s DE-604 Lineare Optimierung (DE-588)4035816-1 s Ishizuka, Yo aut Bard, Jonathan F. aut Erscheint auch als Druck-Ausgabe 9780792398219 Erscheint auch als Druck-Ausgabe 9781461378952 Erscheint auch als Druck-Ausgabe 9781461563068 https://doi.org/10.1007/978-1-4615-6305-1 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Shimizu, Kiyotaka Ishizuka, Yo Bard, Jonathan F. Nondifferentiable and Two-Level Mathematical Programming Operations Research/Decision Theory Systems Theory, Control Mathematical Modeling and Industrial Mathematics Operations research Decision making System theory Mathematical models Nichtdifferenzierbare Funktion (DE-588)4326748-8 gnd Optimierung (DE-588)4043664-0 gnd Lineare Optimierung (DE-588)4035816-1 gnd |
subject_GND | (DE-588)4326748-8 (DE-588)4043664-0 (DE-588)4035816-1 |
title | Nondifferentiable and Two-Level Mathematical Programming |
title_auth | Nondifferentiable and Two-Level Mathematical Programming |
title_exact_search | Nondifferentiable and Two-Level Mathematical Programming |
title_exact_search_txtP | Nondifferentiable and Two-Level Mathematical Programming |
title_full | Nondifferentiable and Two-Level Mathematical Programming by Kiyotaka Shimizu, Yo Ishizuka, Jonathan F. Bard |
title_fullStr | Nondifferentiable and Two-Level Mathematical Programming by Kiyotaka Shimizu, Yo Ishizuka, Jonathan F. Bard |
title_full_unstemmed | Nondifferentiable and Two-Level Mathematical Programming by Kiyotaka Shimizu, Yo Ishizuka, Jonathan F. Bard |
title_short | Nondifferentiable and Two-Level Mathematical Programming |
title_sort | nondifferentiable and two level mathematical programming |
topic | Operations Research/Decision Theory Systems Theory, Control Mathematical Modeling and Industrial Mathematics Operations research Decision making System theory Mathematical models Nichtdifferenzierbare Funktion (DE-588)4326748-8 gnd Optimierung (DE-588)4043664-0 gnd Lineare Optimierung (DE-588)4035816-1 gnd |
topic_facet | Operations Research/Decision Theory Systems Theory, Control Mathematical Modeling and Industrial Mathematics Operations research Decision making System theory Mathematical models Nichtdifferenzierbare Funktion Optimierung Lineare Optimierung |
url | https://doi.org/10.1007/978-1-4615-6305-1 |
work_keys_str_mv | AT shimizukiyotaka nondifferentiableandtwolevelmathematicalprogramming AT ishizukayo nondifferentiableandtwolevelmathematicalprogramming AT bardjonathanf nondifferentiableandtwolevelmathematicalprogramming |