Multiobjective Scheduling by Genetic Algorithms:
Multiobjective Scheduling by Genetic Algorithms describes methods for developing multiobjective solutions to common production scheduling equations modeling in the literature as flowshops, job shops and open shops. The methodology is metaheuristic, one inspired by how nature has evolved a multitude...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer US
1999
|
Ausgabe: | 1st ed. 1999 |
Schlagworte: | |
Online-Zugang: | BTU01 Volltext |
Zusammenfassung: | Multiobjective Scheduling by Genetic Algorithms describes methods for developing multiobjective solutions to common production scheduling equations modeling in the literature as flowshops, job shops and open shops. The methodology is metaheuristic, one inspired by how nature has evolved a multitude of coexisting species of living beings on earth. Multiobjective flowshops, job shops and open shops are each highly relevant models in manufacturing, classroom scheduling or automotive assembly, yet for want of sound methods they have remained almost untouched to date. This text shows how methods such as Elitist Nondominated Sorting Genetic Algorithm (ENGA) can find a bevy of Pareto optimal solutions for them. Also it accents the value of hybridizing Gas with both solution-generating and solution-improvement methods. It envisions fundamental research into such methods, greatly strengthening the growing reach of metaheuristic methods. This book is therefore intended for students of industrial engineering, operations research, operations management and computer science, as well as practitioners. It may also assist in the development of efficient shop management software tools for schedulers and production planners who face multiple planning and operating objectives as a matter of course |
Beschreibung: | 1 Online-Ressource (XIII, 358 p) |
ISBN: | 9781461552376 |
DOI: | 10.1007/978-1-4615-5237-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV046872179 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 200828s1999 |||| o||u| ||||||eng d | ||
020 | |a 9781461552376 |9 978-1-4615-5237-6 | ||
024 | 7 | |a 10.1007/978-1-4615-5237-6 |2 doi | |
035 | |a (ZDB-2-SBE)978-1-4615-5237-6 | ||
035 | |a (OCoLC)903196297 | ||
035 | |a (DE-599)BVBBV046872179 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
082 | 0 | |a 658.5 |2 23 | |
084 | |a ST 285 |0 (DE-625)143648: |2 rvk | ||
084 | |a ST 301 |0 (DE-625)143651: |2 rvk | ||
100 | 1 | |a Bagchi, Tapan P. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Multiobjective Scheduling by Genetic Algorithms |c by Tapan P. Bagchi |
250 | |a 1st ed. 1999 | ||
264 | 1 | |a New York, NY |b Springer US |c 1999 | |
300 | |a 1 Online-Ressource (XIII, 358 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a Multiobjective Scheduling by Genetic Algorithms describes methods for developing multiobjective solutions to common production scheduling equations modeling in the literature as flowshops, job shops and open shops. The methodology is metaheuristic, one inspired by how nature has evolved a multitude of coexisting species of living beings on earth. Multiobjective flowshops, job shops and open shops are each highly relevant models in manufacturing, classroom scheduling or automotive assembly, yet for want of sound methods they have remained almost untouched to date. This text shows how methods such as Elitist Nondominated Sorting Genetic Algorithm (ENGA) can find a bevy of Pareto optimal solutions for them. Also it accents the value of hybridizing Gas with both solution-generating and solution-improvement methods. It envisions fundamental research into such methods, greatly strengthening the growing reach of metaheuristic methods. This book is therefore intended for students of industrial engineering, operations research, operations management and computer science, as well as practitioners. It may also assist in the development of efficient shop management software tools for schedulers and production planners who face multiple planning and operating objectives as a matter of course | ||
650 | 4 | |a Operations Management | |
650 | 4 | |a Operations Research/Decision Theory | |
650 | 4 | |a Production management | |
650 | 4 | |a Operations research | |
650 | 4 | |a Decision making | |
650 | 0 | 7 | |a Genetischer Algorithmus |0 (DE-588)4265092-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Reihenfolgeproblem |0 (DE-588)4242167-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mehrkriterielle Optimierung |0 (DE-588)4610682-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Reihenfolgeproblem |0 (DE-588)4242167-6 |D s |
689 | 0 | 1 | |a Mehrkriterielle Optimierung |0 (DE-588)4610682-0 |D s |
689 | 0 | 2 | |a Genetischer Algorithmus |0 (DE-588)4265092-6 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780792385615 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781461373872 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781461552383 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4615-5237-6 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SBE |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SBE_Archiv | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032282311 | ||
966 | e | |u https://doi.org/10.1007/978-1-4615-5237-6 |l BTU01 |p ZDB-2-SBE |q ZDB-2-SBE_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181720825593856 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Bagchi, Tapan P. |
author_facet | Bagchi, Tapan P. |
author_role | aut |
author_sort | Bagchi, Tapan P. |
author_variant | t p b tp tpb |
building | Verbundindex |
bvnumber | BV046872179 |
classification_rvk | ST 285 ST 301 |
collection | ZDB-2-SBE ZDB-2-BAE |
ctrlnum | (ZDB-2-SBE)978-1-4615-5237-6 (OCoLC)903196297 (DE-599)BVBBV046872179 |
dewey-full | 658.5 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 658 - General management |
dewey-raw | 658.5 |
dewey-search | 658.5 |
dewey-sort | 3658.5 |
dewey-tens | 650 - Management and auxiliary services |
discipline | Informatik Wirtschaftswissenschaften |
discipline_str_mv | Informatik Wirtschaftswissenschaften |
doi_str_mv | 10.1007/978-1-4615-5237-6 |
edition | 1st ed. 1999 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03412nmm a2200565zc 4500</leader><controlfield tag="001">BV046872179</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200828s1999 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461552376</subfield><subfield code="9">978-1-4615-5237-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4615-5237-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SBE)978-1-4615-5237-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)903196297</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046872179</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">658.5</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 285</subfield><subfield code="0">(DE-625)143648:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 301</subfield><subfield code="0">(DE-625)143651:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bagchi, Tapan P.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multiobjective Scheduling by Genetic Algorithms</subfield><subfield code="c">by Tapan P. Bagchi</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 1999</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer US</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIII, 358 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Multiobjective Scheduling by Genetic Algorithms describes methods for developing multiobjective solutions to common production scheduling equations modeling in the literature as flowshops, job shops and open shops. The methodology is metaheuristic, one inspired by how nature has evolved a multitude of coexisting species of living beings on earth. Multiobjective flowshops, job shops and open shops are each highly relevant models in manufacturing, classroom scheduling or automotive assembly, yet for want of sound methods they have remained almost untouched to date. This text shows how methods such as Elitist Nondominated Sorting Genetic Algorithm (ENGA) can find a bevy of Pareto optimal solutions for them. Also it accents the value of hybridizing Gas with both solution-generating and solution-improvement methods. It envisions fundamental research into such methods, greatly strengthening the growing reach of metaheuristic methods. This book is therefore intended for students of industrial engineering, operations research, operations management and computer science, as well as practitioners. It may also assist in the development of efficient shop management software tools for schedulers and production planners who face multiple planning and operating objectives as a matter of course</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations Management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations Research/Decision Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Production management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decision making</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Genetischer Algorithmus</subfield><subfield code="0">(DE-588)4265092-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Reihenfolgeproblem</subfield><subfield code="0">(DE-588)4242167-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mehrkriterielle Optimierung</subfield><subfield code="0">(DE-588)4610682-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Reihenfolgeproblem</subfield><subfield code="0">(DE-588)4242167-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mehrkriterielle Optimierung</subfield><subfield code="0">(DE-588)4610682-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Genetischer Algorithmus</subfield><subfield code="0">(DE-588)4265092-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780792385615</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781461373872</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781461552383</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4615-5237-6</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SBE</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SBE_Archiv</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032282311</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4615-5237-6</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SBE</subfield><subfield code="q">ZDB-2-SBE_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046872179 |
illustrated | Not Illustrated |
index_date | 2024-07-03T15:15:37Z |
indexdate | 2024-07-10T08:56:09Z |
institution | BVB |
isbn | 9781461552376 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032282311 |
oclc_num | 903196297 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | 1 Online-Ressource (XIII, 358 p) |
psigel | ZDB-2-SBE ZDB-2-BAE ZDB-2-SBE_Archiv ZDB-2-SBE ZDB-2-SBE_Archiv |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Springer US |
record_format | marc |
spelling | Bagchi, Tapan P. Verfasser aut Multiobjective Scheduling by Genetic Algorithms by Tapan P. Bagchi 1st ed. 1999 New York, NY Springer US 1999 1 Online-Ressource (XIII, 358 p) txt rdacontent c rdamedia cr rdacarrier Multiobjective Scheduling by Genetic Algorithms describes methods for developing multiobjective solutions to common production scheduling equations modeling in the literature as flowshops, job shops and open shops. The methodology is metaheuristic, one inspired by how nature has evolved a multitude of coexisting species of living beings on earth. Multiobjective flowshops, job shops and open shops are each highly relevant models in manufacturing, classroom scheduling or automotive assembly, yet for want of sound methods they have remained almost untouched to date. This text shows how methods such as Elitist Nondominated Sorting Genetic Algorithm (ENGA) can find a bevy of Pareto optimal solutions for them. Also it accents the value of hybridizing Gas with both solution-generating and solution-improvement methods. It envisions fundamental research into such methods, greatly strengthening the growing reach of metaheuristic methods. This book is therefore intended for students of industrial engineering, operations research, operations management and computer science, as well as practitioners. It may also assist in the development of efficient shop management software tools for schedulers and production planners who face multiple planning and operating objectives as a matter of course Operations Management Operations Research/Decision Theory Production management Operations research Decision making Genetischer Algorithmus (DE-588)4265092-6 gnd rswk-swf Reihenfolgeproblem (DE-588)4242167-6 gnd rswk-swf Mehrkriterielle Optimierung (DE-588)4610682-0 gnd rswk-swf Reihenfolgeproblem (DE-588)4242167-6 s Mehrkriterielle Optimierung (DE-588)4610682-0 s Genetischer Algorithmus (DE-588)4265092-6 s DE-604 Erscheint auch als Druck-Ausgabe 9780792385615 Erscheint auch als Druck-Ausgabe 9781461373872 Erscheint auch als Druck-Ausgabe 9781461552383 https://doi.org/10.1007/978-1-4615-5237-6 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Bagchi, Tapan P. Multiobjective Scheduling by Genetic Algorithms Operations Management Operations Research/Decision Theory Production management Operations research Decision making Genetischer Algorithmus (DE-588)4265092-6 gnd Reihenfolgeproblem (DE-588)4242167-6 gnd Mehrkriterielle Optimierung (DE-588)4610682-0 gnd |
subject_GND | (DE-588)4265092-6 (DE-588)4242167-6 (DE-588)4610682-0 |
title | Multiobjective Scheduling by Genetic Algorithms |
title_auth | Multiobjective Scheduling by Genetic Algorithms |
title_exact_search | Multiobjective Scheduling by Genetic Algorithms |
title_exact_search_txtP | Multiobjective Scheduling by Genetic Algorithms |
title_full | Multiobjective Scheduling by Genetic Algorithms by Tapan P. Bagchi |
title_fullStr | Multiobjective Scheduling by Genetic Algorithms by Tapan P. Bagchi |
title_full_unstemmed | Multiobjective Scheduling by Genetic Algorithms by Tapan P. Bagchi |
title_short | Multiobjective Scheduling by Genetic Algorithms |
title_sort | multiobjective scheduling by genetic algorithms |
topic | Operations Management Operations Research/Decision Theory Production management Operations research Decision making Genetischer Algorithmus (DE-588)4265092-6 gnd Reihenfolgeproblem (DE-588)4242167-6 gnd Mehrkriterielle Optimierung (DE-588)4610682-0 gnd |
topic_facet | Operations Management Operations Research/Decision Theory Production management Operations research Decision making Genetischer Algorithmus Reihenfolgeproblem Mehrkriterielle Optimierung |
url | https://doi.org/10.1007/978-1-4615-5237-6 |
work_keys_str_mv | AT bagchitapanp multiobjectiveschedulingbygeneticalgorithms |