Balanced Silverman Games on General Discrete Sets:
A Silverman game is a two-person zero-sum game defined in terms of two sets S I and S II of positive numbers, and two parameters, the threshold T > 1 and the penalty v > 0. Players I and II independently choose numbers from S I and S II, respectively. The higher number wins 1, unless it is at...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1991
|
Ausgabe: | 1st ed. 1991 |
Schriftenreihe: | Lecture Notes in Economics and Mathematical Systems
365 |
Schlagworte: | |
Online-Zugang: | BTU01 Volltext |
Zusammenfassung: | A Silverman game is a two-person zero-sum game defined in terms of two sets S I and S II of positive numbers, and two parameters, the threshold T > 1 and the penalty v > 0. Players I and II independently choose numbers from S I and S II, respectively. The higher number wins 1, unless it is at least T times as large as the other, in which case it loses v. Equal numbers tie. Such a game might be used to model various bidding or spending situations in which within some bounds the higher bidder or bigger spender wins, but loses if it is overdone. Such situations may include spending on armaments, advertising spending or sealed bids in an auction. Previous work has dealt mainly with special cases. In this work recent progress for arbitrary discrete sets S I and S II is presented. Under quite general conditions, these games reduce to finite matrix games. A large class of games are completely determined by the diagonal of the matrix, and it is shown how the great majority of these appear to have unique optimal strategies. The work is accessible to all who are familiar with basic noncooperative game theory |
Beschreibung: | 1 Online-Ressource (V, 140 p) |
ISBN: | 9783642956638 |
DOI: | 10.1007/978-3-642-95663-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV046872125 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 200828s1991 |||| o||u| ||||||eng d | ||
020 | |a 9783642956638 |9 978-3-642-95663-8 | ||
024 | 7 | |a 10.1007/978-3-642-95663-8 |2 doi | |
035 | |a (ZDB-2-SBE)978-3-642-95663-8 | ||
035 | |a (OCoLC)863888408 | ||
035 | |a (DE-599)BVBBV046872125 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
082 | 0 | |a 330.1 |2 23 | |
084 | |a QH 430 |0 (DE-625)141581: |2 rvk | ||
084 | |a SI 853 |0 (DE-625)143200: |2 rvk | ||
084 | |a SK 860 |0 (DE-625)143264: |2 rvk | ||
100 | 1 | |a Heuer, Gerald A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Balanced Silverman Games on General Discrete Sets |c by Gerald A. Heuer, Ulrike Leopold-Wildburger |
250 | |a 1st ed. 1991 | ||
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1991 | |
300 | |a 1 Online-Ressource (V, 140 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Lecture Notes in Economics and Mathematical Systems |v 365 | |
520 | |a A Silverman game is a two-person zero-sum game defined in terms of two sets S I and S II of positive numbers, and two parameters, the threshold T > 1 and the penalty v > 0. Players I and II independently choose numbers from S I and S II, respectively. The higher number wins 1, unless it is at least T times as large as the other, in which case it loses v. Equal numbers tie. Such a game might be used to model various bidding or spending situations in which within some bounds the higher bidder or bigger spender wins, but loses if it is overdone. Such situations may include spending on armaments, advertising spending or sealed bids in an auction. Previous work has dealt mainly with special cases. In this work recent progress for arbitrary discrete sets S I and S II is presented. Under quite general conditions, these games reduce to finite matrix games. A large class of games are completely determined by the diagonal of the matrix, and it is shown how the great majority of these appear to have unique optimal strategies. The work is accessible to all who are familiar with basic noncooperative game theory | ||
650 | 4 | |a Economic Theory/Quantitative Economics/Mathematical Methods | |
650 | 4 | |a Operations Research/Decision Theory | |
650 | 4 | |a Economic theory | |
650 | 4 | |a Operations research | |
650 | 4 | |a Decision making | |
650 | 0 | 7 | |a Spieltheorie |0 (DE-588)4056243-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Silverman-Spiel |0 (DE-588)4273072-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Silverman-Spiel |0 (DE-588)4273072-7 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Spieltheorie |0 (DE-588)4056243-8 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Leopold-Wildburger, Ulrike |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783540543725 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783642956645 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-95663-8 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SBE |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SBE_Archiv | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032282257 | ||
966 | e | |u https://doi.org/10.1007/978-3-642-95663-8 |l BTU01 |p ZDB-2-SBE |q ZDB-2-SBE_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181720734367744 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Heuer, Gerald A. Leopold-Wildburger, Ulrike |
author_facet | Heuer, Gerald A. Leopold-Wildburger, Ulrike |
author_role | aut aut |
author_sort | Heuer, Gerald A. |
author_variant | g a h ga gah u l w ulw |
building | Verbundindex |
bvnumber | BV046872125 |
classification_rvk | QH 430 SI 853 SK 860 |
collection | ZDB-2-SBE ZDB-2-BAE |
ctrlnum | (ZDB-2-SBE)978-3-642-95663-8 (OCoLC)863888408 (DE-599)BVBBV046872125 |
dewey-full | 330.1 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 330 - Economics |
dewey-raw | 330.1 |
dewey-search | 330.1 |
dewey-sort | 3330.1 |
dewey-tens | 330 - Economics |
discipline | Mathematik Wirtschaftswissenschaften |
discipline_str_mv | Mathematik Wirtschaftswissenschaften |
doi_str_mv | 10.1007/978-3-642-95663-8 |
edition | 1st ed. 1991 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03259nmm a2200577zcb4500</leader><controlfield tag="001">BV046872125</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200828s1991 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642956638</subfield><subfield code="9">978-3-642-95663-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-95663-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SBE)978-3-642-95663-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863888408</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046872125</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">330.1</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 430</subfield><subfield code="0">(DE-625)141581:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 853</subfield><subfield code="0">(DE-625)143200:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 860</subfield><subfield code="0">(DE-625)143264:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Heuer, Gerald A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Balanced Silverman Games on General Discrete Sets</subfield><subfield code="c">by Gerald A. Heuer, Ulrike Leopold-Wildburger</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 1991</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (V, 140 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lecture Notes in Economics and Mathematical Systems</subfield><subfield code="v">365</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A Silverman game is a two-person zero-sum game defined in terms of two sets S I and S II of positive numbers, and two parameters, the threshold T > 1 and the penalty v > 0. Players I and II independently choose numbers from S I and S II, respectively. The higher number wins 1, unless it is at least T times as large as the other, in which case it loses v. Equal numbers tie. Such a game might be used to model various bidding or spending situations in which within some bounds the higher bidder or bigger spender wins, but loses if it is overdone. Such situations may include spending on armaments, advertising spending or sealed bids in an auction. Previous work has dealt mainly with special cases. In this work recent progress for arbitrary discrete sets S I and S II is presented. Under quite general conditions, these games reduce to finite matrix games. A large class of games are completely determined by the diagonal of the matrix, and it is shown how the great majority of these appear to have unique optimal strategies. The work is accessible to all who are familiar with basic noncooperative game theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economic Theory/Quantitative Economics/Mathematical Methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations Research/Decision Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economic theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decision making</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spieltheorie</subfield><subfield code="0">(DE-588)4056243-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Silverman-Spiel</subfield><subfield code="0">(DE-588)4273072-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Silverman-Spiel</subfield><subfield code="0">(DE-588)4273072-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Spieltheorie</subfield><subfield code="0">(DE-588)4056243-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Leopold-Wildburger, Ulrike</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783540543725</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783642956645</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-95663-8</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SBE</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SBE_Archiv</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032282257</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-95663-8</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SBE</subfield><subfield code="q">ZDB-2-SBE_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046872125 |
illustrated | Not Illustrated |
index_date | 2024-07-03T15:15:37Z |
indexdate | 2024-07-10T08:56:09Z |
institution | BVB |
isbn | 9783642956638 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032282257 |
oclc_num | 863888408 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | 1 Online-Ressource (V, 140 p) |
psigel | ZDB-2-SBE ZDB-2-BAE ZDB-2-SBE_Archiv ZDB-2-SBE ZDB-2-SBE_Archiv |
publishDate | 1991 |
publishDateSearch | 1991 |
publishDateSort | 1991 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Lecture Notes in Economics and Mathematical Systems |
spelling | Heuer, Gerald A. Verfasser aut Balanced Silverman Games on General Discrete Sets by Gerald A. Heuer, Ulrike Leopold-Wildburger 1st ed. 1991 Berlin, Heidelberg Springer Berlin Heidelberg 1991 1 Online-Ressource (V, 140 p) txt rdacontent c rdamedia cr rdacarrier Lecture Notes in Economics and Mathematical Systems 365 A Silverman game is a two-person zero-sum game defined in terms of two sets S I and S II of positive numbers, and two parameters, the threshold T > 1 and the penalty v > 0. Players I and II independently choose numbers from S I and S II, respectively. The higher number wins 1, unless it is at least T times as large as the other, in which case it loses v. Equal numbers tie. Such a game might be used to model various bidding or spending situations in which within some bounds the higher bidder or bigger spender wins, but loses if it is overdone. Such situations may include spending on armaments, advertising spending or sealed bids in an auction. Previous work has dealt mainly with special cases. In this work recent progress for arbitrary discrete sets S I and S II is presented. Under quite general conditions, these games reduce to finite matrix games. A large class of games are completely determined by the diagonal of the matrix, and it is shown how the great majority of these appear to have unique optimal strategies. The work is accessible to all who are familiar with basic noncooperative game theory Economic Theory/Quantitative Economics/Mathematical Methods Operations Research/Decision Theory Economic theory Operations research Decision making Spieltheorie (DE-588)4056243-8 gnd rswk-swf Silverman-Spiel (DE-588)4273072-7 gnd rswk-swf Silverman-Spiel (DE-588)4273072-7 s DE-604 Spieltheorie (DE-588)4056243-8 s Leopold-Wildburger, Ulrike aut Erscheint auch als Druck-Ausgabe 9783540543725 Erscheint auch als Druck-Ausgabe 9783642956645 https://doi.org/10.1007/978-3-642-95663-8 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Heuer, Gerald A. Leopold-Wildburger, Ulrike Balanced Silverman Games on General Discrete Sets Economic Theory/Quantitative Economics/Mathematical Methods Operations Research/Decision Theory Economic theory Operations research Decision making Spieltheorie (DE-588)4056243-8 gnd Silverman-Spiel (DE-588)4273072-7 gnd |
subject_GND | (DE-588)4056243-8 (DE-588)4273072-7 |
title | Balanced Silverman Games on General Discrete Sets |
title_auth | Balanced Silverman Games on General Discrete Sets |
title_exact_search | Balanced Silverman Games on General Discrete Sets |
title_exact_search_txtP | Balanced Silverman Games on General Discrete Sets |
title_full | Balanced Silverman Games on General Discrete Sets by Gerald A. Heuer, Ulrike Leopold-Wildburger |
title_fullStr | Balanced Silverman Games on General Discrete Sets by Gerald A. Heuer, Ulrike Leopold-Wildburger |
title_full_unstemmed | Balanced Silverman Games on General Discrete Sets by Gerald A. Heuer, Ulrike Leopold-Wildburger |
title_short | Balanced Silverman Games on General Discrete Sets |
title_sort | balanced silverman games on general discrete sets |
topic | Economic Theory/Quantitative Economics/Mathematical Methods Operations Research/Decision Theory Economic theory Operations research Decision making Spieltheorie (DE-588)4056243-8 gnd Silverman-Spiel (DE-588)4273072-7 gnd |
topic_facet | Economic Theory/Quantitative Economics/Mathematical Methods Operations Research/Decision Theory Economic theory Operations research Decision making Spieltheorie Silverman-Spiel |
url | https://doi.org/10.1007/978-3-642-95663-8 |
work_keys_str_mv | AT heuergeralda balancedsilvermangamesongeneraldiscretesets AT leopoldwildburgerulrike balancedsilvermangamesongeneraldiscretesets |