Geometry of Voting:
Over two centuries of theory and practical experience have taught us that election and decision procedures do not behave as expected. Instead, we now know that when different tallying methods are applied to the same ballots, radically different outcomes can emerge, that most procedures can select th...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1994
|
Ausgabe: | 1st ed. 1994 |
Schriftenreihe: | Studies in Economic Theory
3 |
Schlagworte: | |
Online-Zugang: | BTU01 Volltext |
Zusammenfassung: | Over two centuries of theory and practical experience have taught us that election and decision procedures do not behave as expected. Instead, we now know that when different tallying methods are applied to the same ballots, radically different outcomes can emerge, that most procedures can select the candidate, the voters view as being inferior, and that some commonly used methods have the disturbing anomaly that a winning candidate can lose after receiving added support. A geometric theory is developed to remove much of the mystery of three-candidate voting procedures. In this manner, the spectrum of election outcomes from all positional methods can be compared, new flaws with widely accepted concepts (such as the "Condorcet winner") are identified, and extensions to standard results (e.g. Black's single-peakedness) are obtained. Many of these results are based on the "profile coordinates" introduced here, which makes it possible to "see" the set of all possible voters' preferences leading to specified election outcomes. Thus, it now is possible to visually compare the likelihood of various conclusions. Also, geometry is applied to apportionment methods to uncover new explanations why such methods can create troubling problems |
Beschreibung: | 1 Online-Ressource (XVII, 372 p) |
ISBN: | 9783642486449 |
DOI: | 10.1007/978-3-642-48644-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV046872033 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 200828s1994 |||| o||u| ||||||eng d | ||
020 | |a 9783642486449 |9 978-3-642-48644-9 | ||
024 | 7 | |a 10.1007/978-3-642-48644-9 |2 doi | |
035 | |a (ZDB-2-SBE)978-3-642-48644-9 | ||
035 | |a (OCoLC)903196450 | ||
035 | |a (DE-599)BVBBV046872033 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
082 | 0 | |a 330.1 |2 23 | |
084 | |a MF 4000 |0 (DE-625)122712: |2 rvk | ||
084 | |a MF 4100 |0 (DE-625)122713: |2 rvk | ||
084 | |a MF 4800 |0 (DE-625)122728: |2 rvk | ||
084 | |a SK 980 |0 (DE-625)143277: |2 rvk | ||
084 | |a SK 990 |0 (DE-625)143278: |2 rvk | ||
100 | 1 | |a Saari, Donald G. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Geometry of Voting |c by Donald G. Saari |
250 | |a 1st ed. 1994 | ||
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1994 | |
300 | |a 1 Online-Ressource (XVII, 372 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Studies in Economic Theory |v 3 | |
520 | |a Over two centuries of theory and practical experience have taught us that election and decision procedures do not behave as expected. Instead, we now know that when different tallying methods are applied to the same ballots, radically different outcomes can emerge, that most procedures can select the candidate, the voters view as being inferior, and that some commonly used methods have the disturbing anomaly that a winning candidate can lose after receiving added support. A geometric theory is developed to remove much of the mystery of three-candidate voting procedures. In this manner, the spectrum of election outcomes from all positional methods can be compared, new flaws with widely accepted concepts (such as the "Condorcet winner") are identified, and extensions to standard results (e.g. Black's single-peakedness) are obtained. Many of these results are based on the "profile coordinates" introduced here, which makes it possible to "see" the set of all possible voters' preferences leading to specified election outcomes. Thus, it now is possible to visually compare the likelihood of various conclusions. Also, geometry is applied to apportionment methods to uncover new explanations why such methods can create troubling problems | ||
650 | 4 | |a Economic Theory/Quantitative Economics/Mathematical Methods | |
650 | 4 | |a Operations Research/Decision Theory | |
650 | 4 | |a Economic theory | |
650 | 4 | |a Operations research | |
650 | 4 | |a Decision making | |
650 | 0 | 7 | |a Wahlverhalten |0 (DE-588)4079009-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematisches Modell |0 (DE-588)4114528-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Wahlverhalten |0 (DE-588)4079009-5 |D s |
689 | 0 | 1 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783642486463 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783540571995 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783642486456 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-48644-9 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SBE |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SBE_Archiv | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032282165 | ||
966 | e | |u https://doi.org/10.1007/978-3-642-48644-9 |l BTU01 |p ZDB-2-SBE |q ZDB-2-SBE_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181720539332608 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Saari, Donald G. |
author_facet | Saari, Donald G. |
author_role | aut |
author_sort | Saari, Donald G. |
author_variant | d g s dg dgs |
building | Verbundindex |
bvnumber | BV046872033 |
classification_rvk | MF 4000 MF 4100 MF 4800 SK 980 SK 990 |
collection | ZDB-2-SBE ZDB-2-BAE |
ctrlnum | (ZDB-2-SBE)978-3-642-48644-9 (OCoLC)903196450 (DE-599)BVBBV046872033 |
dewey-full | 330.1 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 330 - Economics |
dewey-raw | 330.1 |
dewey-search | 330.1 |
dewey-sort | 3330.1 |
dewey-tens | 330 - Economics |
discipline | Politologie Mathematik Wirtschaftswissenschaften |
discipline_str_mv | Politologie Mathematik Wirtschaftswissenschaften |
doi_str_mv | 10.1007/978-3-642-48644-9 |
edition | 1st ed. 1994 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03410nmm a2200589zcb4500</leader><controlfield tag="001">BV046872033</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200828s1994 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642486449</subfield><subfield code="9">978-3-642-48644-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-48644-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SBE)978-3-642-48644-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)903196450</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046872033</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">330.1</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MF 4000</subfield><subfield code="0">(DE-625)122712:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MF 4100</subfield><subfield code="0">(DE-625)122713:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MF 4800</subfield><subfield code="0">(DE-625)122728:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 980</subfield><subfield code="0">(DE-625)143277:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 990</subfield><subfield code="0">(DE-625)143278:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Saari, Donald G.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometry of Voting</subfield><subfield code="c">by Donald G. Saari</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 1994</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVII, 372 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Studies in Economic Theory</subfield><subfield code="v">3</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Over two centuries of theory and practical experience have taught us that election and decision procedures do not behave as expected. Instead, we now know that when different tallying methods are applied to the same ballots, radically different outcomes can emerge, that most procedures can select the candidate, the voters view as being inferior, and that some commonly used methods have the disturbing anomaly that a winning candidate can lose after receiving added support. A geometric theory is developed to remove much of the mystery of three-candidate voting procedures. In this manner, the spectrum of election outcomes from all positional methods can be compared, new flaws with widely accepted concepts (such as the "Condorcet winner") are identified, and extensions to standard results (e.g. Black's single-peakedness) are obtained. Many of these results are based on the "profile coordinates" introduced here, which makes it possible to "see" the set of all possible voters' preferences leading to specified election outcomes. Thus, it now is possible to visually compare the likelihood of various conclusions. Also, geometry is applied to apportionment methods to uncover new explanations why such methods can create troubling problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economic Theory/Quantitative Economics/Mathematical Methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations Research/Decision Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economic theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decision making</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahlverhalten</subfield><subfield code="0">(DE-588)4079009-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wahlverhalten</subfield><subfield code="0">(DE-588)4079009-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783642486463</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783540571995</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783642486456</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-48644-9</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SBE</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SBE_Archiv</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032282165</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-48644-9</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SBE</subfield><subfield code="q">ZDB-2-SBE_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046872033 |
illustrated | Not Illustrated |
index_date | 2024-07-03T15:15:36Z |
indexdate | 2024-07-10T08:56:08Z |
institution | BVB |
isbn | 9783642486449 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032282165 |
oclc_num | 903196450 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | 1 Online-Ressource (XVII, 372 p) |
psigel | ZDB-2-SBE ZDB-2-BAE ZDB-2-SBE_Archiv ZDB-2-SBE ZDB-2-SBE_Archiv |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Studies in Economic Theory |
spelling | Saari, Donald G. Verfasser aut Geometry of Voting by Donald G. Saari 1st ed. 1994 Berlin, Heidelberg Springer Berlin Heidelberg 1994 1 Online-Ressource (XVII, 372 p) txt rdacontent c rdamedia cr rdacarrier Studies in Economic Theory 3 Over two centuries of theory and practical experience have taught us that election and decision procedures do not behave as expected. Instead, we now know that when different tallying methods are applied to the same ballots, radically different outcomes can emerge, that most procedures can select the candidate, the voters view as being inferior, and that some commonly used methods have the disturbing anomaly that a winning candidate can lose after receiving added support. A geometric theory is developed to remove much of the mystery of three-candidate voting procedures. In this manner, the spectrum of election outcomes from all positional methods can be compared, new flaws with widely accepted concepts (such as the "Condorcet winner") are identified, and extensions to standard results (e.g. Black's single-peakedness) are obtained. Many of these results are based on the "profile coordinates" introduced here, which makes it possible to "see" the set of all possible voters' preferences leading to specified election outcomes. Thus, it now is possible to visually compare the likelihood of various conclusions. Also, geometry is applied to apportionment methods to uncover new explanations why such methods can create troubling problems Economic Theory/Quantitative Economics/Mathematical Methods Operations Research/Decision Theory Economic theory Operations research Decision making Wahlverhalten (DE-588)4079009-5 gnd rswk-swf Mathematisches Modell (DE-588)4114528-8 gnd rswk-swf Wahlverhalten (DE-588)4079009-5 s Mathematisches Modell (DE-588)4114528-8 s DE-604 Erscheint auch als Druck-Ausgabe 9783642486463 Erscheint auch als Druck-Ausgabe 9783540571995 Erscheint auch als Druck-Ausgabe 9783642486456 https://doi.org/10.1007/978-3-642-48644-9 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Saari, Donald G. Geometry of Voting Economic Theory/Quantitative Economics/Mathematical Methods Operations Research/Decision Theory Economic theory Operations research Decision making Wahlverhalten (DE-588)4079009-5 gnd Mathematisches Modell (DE-588)4114528-8 gnd |
subject_GND | (DE-588)4079009-5 (DE-588)4114528-8 |
title | Geometry of Voting |
title_auth | Geometry of Voting |
title_exact_search | Geometry of Voting |
title_exact_search_txtP | Geometry of Voting |
title_full | Geometry of Voting by Donald G. Saari |
title_fullStr | Geometry of Voting by Donald G. Saari |
title_full_unstemmed | Geometry of Voting by Donald G. Saari |
title_short | Geometry of Voting |
title_sort | geometry of voting |
topic | Economic Theory/Quantitative Economics/Mathematical Methods Operations Research/Decision Theory Economic theory Operations research Decision making Wahlverhalten (DE-588)4079009-5 gnd Mathematisches Modell (DE-588)4114528-8 gnd |
topic_facet | Economic Theory/Quantitative Economics/Mathematical Methods Operations Research/Decision Theory Economic theory Operations research Decision making Wahlverhalten Mathematisches Modell |
url | https://doi.org/10.1007/978-3-642-48644-9 |
work_keys_str_mv | AT saaridonaldg geometryofvoting |