The Purification Problem for Constrained Games with Incomplete Information:
The approach presented in this book combines two aspects of generalizations of the noncooperative game as developed by Nash. First, players choose their acts dependent on certain information variables, and second there are constraints on the sets of decisions for players. After the derivation of a g...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1987
|
Ausgabe: | 1st ed. 1987 |
Schriftenreihe: | Lecture Notes in Economics and Mathematical Systems
295 |
Schlagworte: | |
Online-Zugang: | BTU01 URL des Erstveröffentlichers |
Zusammenfassung: | The approach presented in this book combines two aspects of generalizations of the noncooperative game as developed by Nash. First, players choose their acts dependent on certain information variables, and second there are constraints on the sets of decisions for players. After the derivation of a general (Nash)equilibrium existence theorem, some results from purification theory are used to prove the existence of an approximate equilibrium in pure strategies, that is in nonrandomized decision functions. For some types of payoff-functions and constraints, these games prove to have an (exact) equilibrium in pure strategies. The reason for considering constrained games with incomplete information is that, apart from their game-theoretic importance, they have rather widespread application. Market games with a continuum of traders as well as some statistical decision problems are covered with this approach |
Beschreibung: | 1 Online-Ressource (X, 127 p) |
ISBN: | 9783642502781 |
DOI: | 10.1007/978-3-642-50278-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV046871945 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 200828s1987 |||| o||u| ||||||eng d | ||
020 | |a 9783642502781 |9 978-3-642-50278-1 | ||
024 | 7 | |a 10.1007/978-3-642-50278-1 |2 doi | |
035 | |a (ZDB-2-SBE)978-3-642-50278-1 | ||
035 | |a (OCoLC)864013282 | ||
035 | |a (DE-599)BVBBV046871945 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
082 | 0 | |a 330.1 |2 23 | |
084 | |a QH 430 |0 (DE-625)141581: |2 rvk | ||
084 | |a SI 853 |0 (DE-625)143200: |2 rvk | ||
084 | |a SK 860 |0 (DE-625)143264: |2 rvk | ||
100 | 1 | |a Meister, Helmut |e Verfasser |4 aut | |
245 | 1 | 0 | |a The Purification Problem for Constrained Games with Incomplete Information |c by Helmut Meister |
250 | |a 1st ed. 1987 | ||
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1987 | |
300 | |a 1 Online-Ressource (X, 127 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Lecture Notes in Economics and Mathematical Systems |v 295 | |
520 | |a The approach presented in this book combines two aspects of generalizations of the noncooperative game as developed by Nash. First, players choose their acts dependent on certain information variables, and second there are constraints on the sets of decisions for players. After the derivation of a general (Nash)equilibrium existence theorem, some results from purification theory are used to prove the existence of an approximate equilibrium in pure strategies, that is in nonrandomized decision functions. For some types of payoff-functions and constraints, these games prove to have an (exact) equilibrium in pure strategies. The reason for considering constrained games with incomplete information is that, apart from their game-theoretic importance, they have rather widespread application. Market games with a continuum of traders as well as some statistical decision problems are covered with this approach | ||
650 | 4 | |a Economic Theory/Quantitative Economics/Mathematical Methods | |
650 | 4 | |a Economic theory | |
650 | 0 | 7 | |a Unvollkommene Information |0 (DE-588)4140474-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Spieltheorie |0 (DE-588)4056243-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastisches Entscheidungsmodell |0 (DE-588)4508360-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Spieltheorie |0 (DE-588)4056243-8 |D s |
689 | 0 | 1 | |a Unvollkommene Information |0 (DE-588)4140474-9 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Stochastisches Entscheidungsmodell |0 (DE-588)4508360-5 |D s |
689 | 1 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783540184294 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783642502798 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-50278-1 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SBE |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SBE_Archiv | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032282077 | ||
966 | e | |u https://doi.org/10.1007/978-3-642-50278-1 |l BTU01 |p ZDB-2-SBE |q ZDB-2-SBE_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181720351637504 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Meister, Helmut |
author_facet | Meister, Helmut |
author_role | aut |
author_sort | Meister, Helmut |
author_variant | h m hm |
building | Verbundindex |
bvnumber | BV046871945 |
classification_rvk | QH 430 SI 853 SK 860 |
collection | ZDB-2-SBE ZDB-2-BAE |
ctrlnum | (ZDB-2-SBE)978-3-642-50278-1 (OCoLC)864013282 (DE-599)BVBBV046871945 |
dewey-full | 330.1 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 330 - Economics |
dewey-raw | 330.1 |
dewey-search | 330.1 |
dewey-sort | 3330.1 |
dewey-tens | 330 - Economics |
discipline | Mathematik Wirtschaftswissenschaften |
discipline_str_mv | Mathematik Wirtschaftswissenschaften |
doi_str_mv | 10.1007/978-3-642-50278-1 |
edition | 1st ed. 1987 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03068nmm a2200553zcb4500</leader><controlfield tag="001">BV046871945</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200828s1987 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642502781</subfield><subfield code="9">978-3-642-50278-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-50278-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SBE)978-3-642-50278-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864013282</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046871945</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">330.1</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 430</subfield><subfield code="0">(DE-625)141581:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 853</subfield><subfield code="0">(DE-625)143200:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 860</subfield><subfield code="0">(DE-625)143264:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Meister, Helmut</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Purification Problem for Constrained Games with Incomplete Information</subfield><subfield code="c">by Helmut Meister</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 1987</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1987</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 127 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lecture Notes in Economics and Mathematical Systems</subfield><subfield code="v">295</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The approach presented in this book combines two aspects of generalizations of the noncooperative game as developed by Nash. First, players choose their acts dependent on certain information variables, and second there are constraints on the sets of decisions for players. After the derivation of a general (Nash)equilibrium existence theorem, some results from purification theory are used to prove the existence of an approximate equilibrium in pure strategies, that is in nonrandomized decision functions. For some types of payoff-functions and constraints, these games prove to have an (exact) equilibrium in pure strategies. The reason for considering constrained games with incomplete information is that, apart from their game-theoretic importance, they have rather widespread application. Market games with a continuum of traders as well as some statistical decision problems are covered with this approach</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economic Theory/Quantitative Economics/Mathematical Methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economic theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Unvollkommene Information</subfield><subfield code="0">(DE-588)4140474-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spieltheorie</subfield><subfield code="0">(DE-588)4056243-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastisches Entscheidungsmodell</subfield><subfield code="0">(DE-588)4508360-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Spieltheorie</subfield><subfield code="0">(DE-588)4056243-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Unvollkommene Information</subfield><subfield code="0">(DE-588)4140474-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Stochastisches Entscheidungsmodell</subfield><subfield code="0">(DE-588)4508360-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783540184294</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783642502798</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-50278-1</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SBE</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SBE_Archiv</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032282077</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-50278-1</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SBE</subfield><subfield code="q">ZDB-2-SBE_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046871945 |
illustrated | Not Illustrated |
index_date | 2024-07-03T15:15:36Z |
indexdate | 2024-07-10T08:56:08Z |
institution | BVB |
isbn | 9783642502781 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032282077 |
oclc_num | 864013282 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | 1 Online-Ressource (X, 127 p) |
psigel | ZDB-2-SBE ZDB-2-BAE ZDB-2-SBE_Archiv ZDB-2-SBE ZDB-2-SBE_Archiv |
publishDate | 1987 |
publishDateSearch | 1987 |
publishDateSort | 1987 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Lecture Notes in Economics and Mathematical Systems |
spelling | Meister, Helmut Verfasser aut The Purification Problem for Constrained Games with Incomplete Information by Helmut Meister 1st ed. 1987 Berlin, Heidelberg Springer Berlin Heidelberg 1987 1 Online-Ressource (X, 127 p) txt rdacontent c rdamedia cr rdacarrier Lecture Notes in Economics and Mathematical Systems 295 The approach presented in this book combines two aspects of generalizations of the noncooperative game as developed by Nash. First, players choose their acts dependent on certain information variables, and second there are constraints on the sets of decisions for players. After the derivation of a general (Nash)equilibrium existence theorem, some results from purification theory are used to prove the existence of an approximate equilibrium in pure strategies, that is in nonrandomized decision functions. For some types of payoff-functions and constraints, these games prove to have an (exact) equilibrium in pure strategies. The reason for considering constrained games with incomplete information is that, apart from their game-theoretic importance, they have rather widespread application. Market games with a continuum of traders as well as some statistical decision problems are covered with this approach Economic Theory/Quantitative Economics/Mathematical Methods Economic theory Unvollkommene Information (DE-588)4140474-9 gnd rswk-swf Spieltheorie (DE-588)4056243-8 gnd rswk-swf Stochastisches Entscheidungsmodell (DE-588)4508360-5 gnd rswk-swf Spieltheorie (DE-588)4056243-8 s Unvollkommene Information (DE-588)4140474-9 s DE-604 Stochastisches Entscheidungsmodell (DE-588)4508360-5 s Erscheint auch als Druck-Ausgabe 9783540184294 Erscheint auch als Druck-Ausgabe 9783642502798 https://doi.org/10.1007/978-3-642-50278-1 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Meister, Helmut The Purification Problem for Constrained Games with Incomplete Information Economic Theory/Quantitative Economics/Mathematical Methods Economic theory Unvollkommene Information (DE-588)4140474-9 gnd Spieltheorie (DE-588)4056243-8 gnd Stochastisches Entscheidungsmodell (DE-588)4508360-5 gnd |
subject_GND | (DE-588)4140474-9 (DE-588)4056243-8 (DE-588)4508360-5 |
title | The Purification Problem for Constrained Games with Incomplete Information |
title_auth | The Purification Problem for Constrained Games with Incomplete Information |
title_exact_search | The Purification Problem for Constrained Games with Incomplete Information |
title_exact_search_txtP | The Purification Problem for Constrained Games with Incomplete Information |
title_full | The Purification Problem for Constrained Games with Incomplete Information by Helmut Meister |
title_fullStr | The Purification Problem for Constrained Games with Incomplete Information by Helmut Meister |
title_full_unstemmed | The Purification Problem for Constrained Games with Incomplete Information by Helmut Meister |
title_short | The Purification Problem for Constrained Games with Incomplete Information |
title_sort | the purification problem for constrained games with incomplete information |
topic | Economic Theory/Quantitative Economics/Mathematical Methods Economic theory Unvollkommene Information (DE-588)4140474-9 gnd Spieltheorie (DE-588)4056243-8 gnd Stochastisches Entscheidungsmodell (DE-588)4508360-5 gnd |
topic_facet | Economic Theory/Quantitative Economics/Mathematical Methods Economic theory Unvollkommene Information Spieltheorie Stochastisches Entscheidungsmodell |
url | https://doi.org/10.1007/978-3-642-50278-1 |
work_keys_str_mv | AT meisterhelmut thepurificationproblemforconstrainedgameswithincompleteinformation |