Conditional Moment Estimation of Nonlinear Equation Systems: With an Application to an Oligopoly Model of Cooperative R&D

Generalized method of moments (GMM) estimation of nonlinear systems has two important advantages over conventional maximum likelihood (ML) estimation: GMM estimation usually requires less restrictive distributional assumptions and remains computationally attractive when ML estimation becomes burdens...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Inkmann, Joachim (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Berlin, Heidelberg Springer Berlin Heidelberg 2001
Ausgabe:1st ed. 2001
Schriftenreihe:Lecture Notes in Economics and Mathematical Systems 497
Schlagworte:
Online-Zugang:BTU01
URL des Erstveröffentlichers
Zusammenfassung:Generalized method of moments (GMM) estimation of nonlinear systems has two important advantages over conventional maximum likelihood (ML) estimation: GMM estimation usually requires less restrictive distributional assumptions and remains computationally attractive when ML estimation becomes burdensome or even impossible. This book presents an in-depth treatment of the conditional moment approach to GMM estimation of models frequently encountered in applied microeconometrics. It covers both large sample and small sample properties of conditional moment estimators and provides an application to empirical industrial organization. With its comprehensive and up-to-date coverage of the subject which includes topics like bootstrapping and empirical likelihood techniques, the book addresses scientists, graduate students and professionals in applied econometrics
Beschreibung:1 Online-Ressource (VIII, 214 p)
ISBN:9783642565717
DOI:10.1007/978-3-642-56571-7

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Volltext öffnen