Axiomatic Models of Bargaining:
The problem to be considered here is the one faced by bargainers who must reach a consensus--i.e., a unanimous decision. Specifically, we will be consid ering n-person games in which there is a set of feasible alternatives, any one of which can be the outcome of bargaining if it is agreed to by all...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1979
|
Ausgabe: | 1st ed. 1979 |
Schriftenreihe: | Lecture Notes in Economics and Mathematical Systems
170 |
Schlagworte: | |
Online-Zugang: | BTU01 Volltext |
Zusammenfassung: | The problem to be considered here is the one faced by bargainers who must reach a consensus--i.e., a unanimous decision. Specifically, we will be consid ering n-person games in which there is a set of feasible alternatives, any one of which can be the outcome of bargaining if it is agreed to by all the bargainers. In the event that no unanimous agreement is reached, some pre-specified disagree ment outcome will be the result. Thus, in games of this type, each player has a veto over any alternative other than the disagreement outcome. There are several reasons for studying games of this type. First, many negotiating situations, particularly those involving only two bargainers (i.e., when n = 2), are conducted under essentially these rules. Also, bargaining games of this type often occur as components of more complex processes. In addi tion, the simplicity of bargaining games makes them an excellent vehicle for studying the effect of any assumptions which are made in their analysis. The effect of many of the assumptions which are made in the analysis of more complex cooperative games can more easily be discerned in studying bargaining games. The various models of bargaining considered here will be studied axioma- cally. That is, each model will be studied by specifying a set of properties which serve to characterize it uniquely |
Beschreibung: | 1 Online-Ressource (V, 126 p) |
ISBN: | 9783642515705 |
DOI: | 10.1007/978-3-642-51570-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV046871793 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 200828s1979 |||| o||u| ||||||eng d | ||
020 | |a 9783642515705 |9 978-3-642-51570-5 | ||
024 | 7 | |a 10.1007/978-3-642-51570-5 |2 doi | |
035 | |a (ZDB-2-SBE)978-3-642-51570-5 | ||
035 | |a (OCoLC)864019214 | ||
035 | |a (DE-599)BVBBV046871793 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
082 | 0 | |a 330.1 |2 23 | |
084 | |a QH 400 |0 (DE-625)141571: |2 rvk | ||
084 | |a QH 435 |0 (DE-625)141585: |2 rvk | ||
084 | |a SI 853 |0 (DE-625)143200: |2 rvk | ||
100 | 1 | |a Roth, A.E. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Axiomatic Models of Bargaining |c by A.E. Roth |
250 | |a 1st ed. 1979 | ||
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1979 | |
300 | |a 1 Online-Ressource (V, 126 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Lecture Notes in Economics and Mathematical Systems |v 170 | |
520 | |a The problem to be considered here is the one faced by bargainers who must reach a consensus--i.e., a unanimous decision. Specifically, we will be consid ering n-person games in which there is a set of feasible alternatives, any one of which can be the outcome of bargaining if it is agreed to by all the bargainers. In the event that no unanimous agreement is reached, some pre-specified disagree ment outcome will be the result. Thus, in games of this type, each player has a veto over any alternative other than the disagreement outcome. There are several reasons for studying games of this type. First, many negotiating situations, particularly those involving only two bargainers (i.e., when n = 2), are conducted under essentially these rules. Also, bargaining games of this type often occur as components of more complex processes. In addi tion, the simplicity of bargaining games makes them an excellent vehicle for studying the effect of any assumptions which are made in their analysis. The effect of many of the assumptions which are made in the analysis of more complex cooperative games can more easily be discerned in studying bargaining games. The various models of bargaining considered here will be studied axioma- cally. That is, each model will be studied by specifying a set of properties which serve to characterize it uniquely | ||
650 | 4 | |a Economic Theory/Quantitative Economics/Mathematical Methods | |
650 | 4 | |a Economic theory | |
650 | 0 | 7 | |a Wirtschaft |0 (DE-588)4066399-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Tarifvertrag |0 (DE-588)4117170-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Modell |0 (DE-588)4039798-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Verhandlungstheorie |0 (DE-588)4139583-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematisches Modell |0 (DE-588)4114528-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Spieltheorie |0 (DE-588)4056243-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Verhandlungstheorie |0 (DE-588)4139583-9 |D s |
689 | 0 | 1 | |a Wirtschaft |0 (DE-588)4066399-1 |D s |
689 | 0 | 2 | |a Modell |0 (DE-588)4039798-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Verhandlungstheorie |0 (DE-588)4139583-9 |D s |
689 | 1 | 1 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Spieltheorie |0 (DE-588)4056243-8 |D s |
689 | 2 | |5 DE-604 | |
689 | 3 | 0 | |a Tarifvertrag |0 (DE-588)4117170-6 |D s |
689 | 3 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783540095408 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783642515712 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-51570-5 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SBE |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SBE_Archiv | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032281925 | ||
966 | e | |u https://doi.org/10.1007/978-3-642-51570-5 |l BTU01 |p ZDB-2-SBE |q ZDB-2-SBE_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181720005607424 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Roth, A.E |
author_facet | Roth, A.E |
author_role | aut |
author_sort | Roth, A.E |
author_variant | a r ar |
building | Verbundindex |
bvnumber | BV046871793 |
classification_rvk | QH 400 QH 435 SI 853 |
collection | ZDB-2-SBE ZDB-2-BAE |
ctrlnum | (ZDB-2-SBE)978-3-642-51570-5 (OCoLC)864019214 (DE-599)BVBBV046871793 |
dewey-full | 330.1 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 330 - Economics |
dewey-raw | 330.1 |
dewey-search | 330.1 |
dewey-sort | 3330.1 |
dewey-tens | 330 - Economics |
discipline | Mathematik Wirtschaftswissenschaften |
discipline_str_mv | Mathematik Wirtschaftswissenschaften |
doi_str_mv | 10.1007/978-3-642-51570-5 |
edition | 1st ed. 1979 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03841nmm a2200661zcb4500</leader><controlfield tag="001">BV046871793</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200828s1979 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642515705</subfield><subfield code="9">978-3-642-51570-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-51570-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SBE)978-3-642-51570-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864019214</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046871793</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">330.1</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 400</subfield><subfield code="0">(DE-625)141571:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 435</subfield><subfield code="0">(DE-625)141585:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 853</subfield><subfield code="0">(DE-625)143200:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Roth, A.E.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Axiomatic Models of Bargaining</subfield><subfield code="c">by A.E. Roth</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 1979</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1979</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (V, 126 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lecture Notes in Economics and Mathematical Systems</subfield><subfield code="v">170</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The problem to be considered here is the one faced by bargainers who must reach a consensus--i.e., a unanimous decision. Specifically, we will be consid ering n-person games in which there is a set of feasible alternatives, any one of which can be the outcome of bargaining if it is agreed to by all the bargainers. In the event that no unanimous agreement is reached, some pre-specified disagree ment outcome will be the result. Thus, in games of this type, each player has a veto over any alternative other than the disagreement outcome. There are several reasons for studying games of this type. First, many negotiating situations, particularly those involving only two bargainers (i.e., when n = 2), are conducted under essentially these rules. Also, bargaining games of this type often occur as components of more complex processes. In addi tion, the simplicity of bargaining games makes them an excellent vehicle for studying the effect of any assumptions which are made in their analysis. The effect of many of the assumptions which are made in the analysis of more complex cooperative games can more easily be discerned in studying bargaining games. The various models of bargaining considered here will be studied axioma- cally. That is, each model will be studied by specifying a set of properties which serve to characterize it uniquely</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economic Theory/Quantitative Economics/Mathematical Methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economic theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wirtschaft</subfield><subfield code="0">(DE-588)4066399-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Tarifvertrag</subfield><subfield code="0">(DE-588)4117170-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modell</subfield><subfield code="0">(DE-588)4039798-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Verhandlungstheorie</subfield><subfield code="0">(DE-588)4139583-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spieltheorie</subfield><subfield code="0">(DE-588)4056243-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Verhandlungstheorie</subfield><subfield code="0">(DE-588)4139583-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Wirtschaft</subfield><subfield code="0">(DE-588)4066399-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Modell</subfield><subfield code="0">(DE-588)4039798-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Verhandlungstheorie</subfield><subfield code="0">(DE-588)4139583-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Spieltheorie</subfield><subfield code="0">(DE-588)4056243-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Tarifvertrag</subfield><subfield code="0">(DE-588)4117170-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783540095408</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783642515712</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-51570-5</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SBE</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SBE_Archiv</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032281925</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-51570-5</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SBE</subfield><subfield code="q">ZDB-2-SBE_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046871793 |
illustrated | Not Illustrated |
index_date | 2024-07-03T15:15:36Z |
indexdate | 2024-07-10T08:56:08Z |
institution | BVB |
isbn | 9783642515705 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032281925 |
oclc_num | 864019214 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | 1 Online-Ressource (V, 126 p) |
psigel | ZDB-2-SBE ZDB-2-BAE ZDB-2-SBE_Archiv ZDB-2-SBE ZDB-2-SBE_Archiv |
publishDate | 1979 |
publishDateSearch | 1979 |
publishDateSort | 1979 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Lecture Notes in Economics and Mathematical Systems |
spelling | Roth, A.E. Verfasser aut Axiomatic Models of Bargaining by A.E. Roth 1st ed. 1979 Berlin, Heidelberg Springer Berlin Heidelberg 1979 1 Online-Ressource (V, 126 p) txt rdacontent c rdamedia cr rdacarrier Lecture Notes in Economics and Mathematical Systems 170 The problem to be considered here is the one faced by bargainers who must reach a consensus--i.e., a unanimous decision. Specifically, we will be consid ering n-person games in which there is a set of feasible alternatives, any one of which can be the outcome of bargaining if it is agreed to by all the bargainers. In the event that no unanimous agreement is reached, some pre-specified disagree ment outcome will be the result. Thus, in games of this type, each player has a veto over any alternative other than the disagreement outcome. There are several reasons for studying games of this type. First, many negotiating situations, particularly those involving only two bargainers (i.e., when n = 2), are conducted under essentially these rules. Also, bargaining games of this type often occur as components of more complex processes. In addi tion, the simplicity of bargaining games makes them an excellent vehicle for studying the effect of any assumptions which are made in their analysis. The effect of many of the assumptions which are made in the analysis of more complex cooperative games can more easily be discerned in studying bargaining games. The various models of bargaining considered here will be studied axioma- cally. That is, each model will be studied by specifying a set of properties which serve to characterize it uniquely Economic Theory/Quantitative Economics/Mathematical Methods Economic theory Wirtschaft (DE-588)4066399-1 gnd rswk-swf Tarifvertrag (DE-588)4117170-6 gnd rswk-swf Modell (DE-588)4039798-1 gnd rswk-swf Verhandlungstheorie (DE-588)4139583-9 gnd rswk-swf Mathematisches Modell (DE-588)4114528-8 gnd rswk-swf Spieltheorie (DE-588)4056243-8 gnd rswk-swf Verhandlungstheorie (DE-588)4139583-9 s Wirtschaft (DE-588)4066399-1 s Modell (DE-588)4039798-1 s DE-604 Mathematisches Modell (DE-588)4114528-8 s Spieltheorie (DE-588)4056243-8 s Tarifvertrag (DE-588)4117170-6 s Erscheint auch als Druck-Ausgabe 9783540095408 Erscheint auch als Druck-Ausgabe 9783642515712 https://doi.org/10.1007/978-3-642-51570-5 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Roth, A.E Axiomatic Models of Bargaining Economic Theory/Quantitative Economics/Mathematical Methods Economic theory Wirtschaft (DE-588)4066399-1 gnd Tarifvertrag (DE-588)4117170-6 gnd Modell (DE-588)4039798-1 gnd Verhandlungstheorie (DE-588)4139583-9 gnd Mathematisches Modell (DE-588)4114528-8 gnd Spieltheorie (DE-588)4056243-8 gnd |
subject_GND | (DE-588)4066399-1 (DE-588)4117170-6 (DE-588)4039798-1 (DE-588)4139583-9 (DE-588)4114528-8 (DE-588)4056243-8 |
title | Axiomatic Models of Bargaining |
title_auth | Axiomatic Models of Bargaining |
title_exact_search | Axiomatic Models of Bargaining |
title_exact_search_txtP | Axiomatic Models of Bargaining |
title_full | Axiomatic Models of Bargaining by A.E. Roth |
title_fullStr | Axiomatic Models of Bargaining by A.E. Roth |
title_full_unstemmed | Axiomatic Models of Bargaining by A.E. Roth |
title_short | Axiomatic Models of Bargaining |
title_sort | axiomatic models of bargaining |
topic | Economic Theory/Quantitative Economics/Mathematical Methods Economic theory Wirtschaft (DE-588)4066399-1 gnd Tarifvertrag (DE-588)4117170-6 gnd Modell (DE-588)4039798-1 gnd Verhandlungstheorie (DE-588)4139583-9 gnd Mathematisches Modell (DE-588)4114528-8 gnd Spieltheorie (DE-588)4056243-8 gnd |
topic_facet | Economic Theory/Quantitative Economics/Mathematical Methods Economic theory Wirtschaft Tarifvertrag Modell Verhandlungstheorie Mathematisches Modell Spieltheorie |
url | https://doi.org/10.1007/978-3-642-51570-5 |
work_keys_str_mv | AT rothae axiomaticmodelsofbargaining |