Infinite Horizon Optimal Control: Theory and Applications
This monograph deals with various classes of deterministic continuous time optimal control problems wh ich are defined over unbounded time intervala. For these problems, the performance criterion is described by an improper integral and it is possible that, when evaluated at a given admissible eleme...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1987
|
Ausgabe: | 1st ed. 1987 |
Schriftenreihe: | Lecture Notes in Economics and Mathematical Systems
290 |
Schlagworte: | |
Online-Zugang: | BTU01 Volltext |
Zusammenfassung: | This monograph deals with various classes of deterministic continuous time optimal control problems wh ich are defined over unbounded time intervala. For these problems, the performance criterion is described by an improper integral and it is possible that, when evaluated at a given admissible element, this criterion is unbounded. To cope with this divergence new optimality concepts; referred to here as "overtaking", "weakly overtaking", "agreeable plans", etc. ; have been proposed. The motivation for studying these problems arisee primarily from the economic and biological aciences where models of this nature arise quite naturally since no natural bound can be placed on the time horizon when one considers the evolution of the state of a given economy or species. The reeponsibility for the introduction of this interesting class of problems rests with the economiste who first studied them in the modeling of capital accumulation processes. Perhaps the earliest of these was F. Ramsey who, in his seminal work on a theory of saving in 1928, considered a dynamic optimization model defined on an infinite time horizon. Briefly, this problem can be described as a "Lagrange problem with unbounded time interval". The advent of modern control theory, particularly the formulation of the famoue Maximum Principle of Pontryagin, has had a considerable impact on the treatment of these models as well as optimization theory in general |
Beschreibung: | 1 Online-Ressource (XI, 259 p. 1 illus) |
ISBN: | 9783662025291 |
DOI: | 10.1007/978-3-662-02529-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV046871734 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 200828s1987 |||| o||u| ||||||eng d | ||
020 | |a 9783662025291 |9 978-3-662-02529-1 | ||
024 | 7 | |a 10.1007/978-3-662-02529-1 |2 doi | |
035 | |a (ZDB-2-SBE)978-3-662-02529-1 | ||
035 | |a (OCoLC)860304199 | ||
035 | |a (DE-599)BVBBV046871734 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
082 | 0 | |a 330.1 |2 23 | |
084 | |a QH 721 |0 (DE-625)141612: |2 rvk | ||
084 | |a SI 853 |0 (DE-625)143200: |2 rvk | ||
100 | 1 | |a Carlson, Dean A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Infinite Horizon Optimal Control |b Theory and Applications |c by Dean A. Carlson, Alain Haurie |
250 | |a 1st ed. 1987 | ||
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1987 | |
300 | |a 1 Online-Ressource (XI, 259 p. 1 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Lecture Notes in Economics and Mathematical Systems |v 290 | |
520 | |a This monograph deals with various classes of deterministic continuous time optimal control problems wh ich are defined over unbounded time intervala. For these problems, the performance criterion is described by an improper integral and it is possible that, when evaluated at a given admissible element, this criterion is unbounded. To cope with this divergence new optimality concepts; referred to here as "overtaking", "weakly overtaking", "agreeable plans", etc. ; have been proposed. The motivation for studying these problems arisee primarily from the economic and biological aciences where models of this nature arise quite naturally since no natural bound can be placed on the time horizon when one considers the evolution of the state of a given economy or species. The reeponsibility for the introduction of this interesting class of problems rests with the economiste who first studied them in the modeling of capital accumulation processes. Perhaps the earliest of these was F. Ramsey who, in his seminal work on a theory of saving in 1928, considered a dynamic optimization model defined on an infinite time horizon. Briefly, this problem can be described as a "Lagrange problem with unbounded time interval". The advent of modern control theory, particularly the formulation of the famoue Maximum Principle of Pontryagin, has had a considerable impact on the treatment of these models as well as optimization theory in general | ||
650 | 4 | |a Economic Theory/Quantitative Economics/Mathematical Methods | |
650 | 4 | |a Economic theory | |
650 | 0 | 7 | |a Kontrolltheorie |0 (DE-588)4032317-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Optimale Kontrolle |0 (DE-588)4121428-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zeitverhalten |0 (DE-588)4238464-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kontrolltheorie |0 (DE-588)4032317-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Zeitverhalten |0 (DE-588)4238464-3 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Optimale Kontrolle |0 (DE-588)4121428-6 |D s |
689 | 2 | |5 DE-604 | |
700 | 1 | |a Haurie, Alain |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783540178248 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783662025307 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-02529-1 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SBE |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SBE_Archiv | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032281866 | ||
966 | e | |u https://doi.org/10.1007/978-3-662-02529-1 |l BTU01 |p ZDB-2-SBE |q ZDB-2-SBE_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181719903895552 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Carlson, Dean A. Haurie, Alain |
author_facet | Carlson, Dean A. Haurie, Alain |
author_role | aut aut |
author_sort | Carlson, Dean A. |
author_variant | d a c da dac a h ah |
building | Verbundindex |
bvnumber | BV046871734 |
classification_rvk | QH 721 SI 853 |
collection | ZDB-2-SBE ZDB-2-BAE |
ctrlnum | (ZDB-2-SBE)978-3-662-02529-1 (OCoLC)860304199 (DE-599)BVBBV046871734 |
dewey-full | 330.1 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 330 - Economics |
dewey-raw | 330.1 |
dewey-search | 330.1 |
dewey-sort | 3330.1 |
dewey-tens | 330 - Economics |
discipline | Mathematik Wirtschaftswissenschaften |
discipline_str_mv | Mathematik Wirtschaftswissenschaften |
doi_str_mv | 10.1007/978-3-662-02529-1 |
edition | 1st ed. 1987 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03561nmm a2200565zcb4500</leader><controlfield tag="001">BV046871734</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200828s1987 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662025291</subfield><subfield code="9">978-3-662-02529-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-02529-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SBE)978-3-662-02529-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)860304199</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046871734</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">330.1</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 721</subfield><subfield code="0">(DE-625)141612:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 853</subfield><subfield code="0">(DE-625)143200:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Carlson, Dean A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Infinite Horizon Optimal Control</subfield><subfield code="b">Theory and Applications</subfield><subfield code="c">by Dean A. Carlson, Alain Haurie</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 1987</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1987</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 259 p. 1 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lecture Notes in Economics and Mathematical Systems</subfield><subfield code="v">290</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This monograph deals with various classes of deterministic continuous time optimal control problems wh ich are defined over unbounded time intervala. For these problems, the performance criterion is described by an improper integral and it is possible that, when evaluated at a given admissible element, this criterion is unbounded. To cope with this divergence new optimality concepts; referred to here as "overtaking", "weakly overtaking", "agreeable plans", etc. ; have been proposed. The motivation for studying these problems arisee primarily from the economic and biological aciences where models of this nature arise quite naturally since no natural bound can be placed on the time horizon when one considers the evolution of the state of a given economy or species. The reeponsibility for the introduction of this interesting class of problems rests with the economiste who first studied them in the modeling of capital accumulation processes. Perhaps the earliest of these was F. Ramsey who, in his seminal work on a theory of saving in 1928, considered a dynamic optimization model defined on an infinite time horizon. Briefly, this problem can be described as a "Lagrange problem with unbounded time interval". The advent of modern control theory, particularly the formulation of the famoue Maximum Principle of Pontryagin, has had a considerable impact on the treatment of these models as well as optimization theory in general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economic Theory/Quantitative Economics/Mathematical Methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economic theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kontrolltheorie</subfield><subfield code="0">(DE-588)4032317-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optimale Kontrolle</subfield><subfield code="0">(DE-588)4121428-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zeitverhalten</subfield><subfield code="0">(DE-588)4238464-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kontrolltheorie</subfield><subfield code="0">(DE-588)4032317-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Zeitverhalten</subfield><subfield code="0">(DE-588)4238464-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Optimale Kontrolle</subfield><subfield code="0">(DE-588)4121428-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Haurie, Alain</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783540178248</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783662025307</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-02529-1</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SBE</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SBE_Archiv</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032281866</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-02529-1</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SBE</subfield><subfield code="q">ZDB-2-SBE_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046871734 |
illustrated | Not Illustrated |
index_date | 2024-07-03T15:15:36Z |
indexdate | 2024-07-10T08:56:08Z |
institution | BVB |
isbn | 9783662025291 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032281866 |
oclc_num | 860304199 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | 1 Online-Ressource (XI, 259 p. 1 illus) |
psigel | ZDB-2-SBE ZDB-2-BAE ZDB-2-SBE_Archiv ZDB-2-SBE ZDB-2-SBE_Archiv |
publishDate | 1987 |
publishDateSearch | 1987 |
publishDateSort | 1987 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Lecture Notes in Economics and Mathematical Systems |
spelling | Carlson, Dean A. Verfasser aut Infinite Horizon Optimal Control Theory and Applications by Dean A. Carlson, Alain Haurie 1st ed. 1987 Berlin, Heidelberg Springer Berlin Heidelberg 1987 1 Online-Ressource (XI, 259 p. 1 illus) txt rdacontent c rdamedia cr rdacarrier Lecture Notes in Economics and Mathematical Systems 290 This monograph deals with various classes of deterministic continuous time optimal control problems wh ich are defined over unbounded time intervala. For these problems, the performance criterion is described by an improper integral and it is possible that, when evaluated at a given admissible element, this criterion is unbounded. To cope with this divergence new optimality concepts; referred to here as "overtaking", "weakly overtaking", "agreeable plans", etc. ; have been proposed. The motivation for studying these problems arisee primarily from the economic and biological aciences where models of this nature arise quite naturally since no natural bound can be placed on the time horizon when one considers the evolution of the state of a given economy or species. The reeponsibility for the introduction of this interesting class of problems rests with the economiste who first studied them in the modeling of capital accumulation processes. Perhaps the earliest of these was F. Ramsey who, in his seminal work on a theory of saving in 1928, considered a dynamic optimization model defined on an infinite time horizon. Briefly, this problem can be described as a "Lagrange problem with unbounded time interval". The advent of modern control theory, particularly the formulation of the famoue Maximum Principle of Pontryagin, has had a considerable impact on the treatment of these models as well as optimization theory in general Economic Theory/Quantitative Economics/Mathematical Methods Economic theory Kontrolltheorie (DE-588)4032317-1 gnd rswk-swf Optimale Kontrolle (DE-588)4121428-6 gnd rswk-swf Zeitverhalten (DE-588)4238464-3 gnd rswk-swf Kontrolltheorie (DE-588)4032317-1 s DE-604 Zeitverhalten (DE-588)4238464-3 s Optimale Kontrolle (DE-588)4121428-6 s Haurie, Alain aut Erscheint auch als Druck-Ausgabe 9783540178248 Erscheint auch als Druck-Ausgabe 9783662025307 https://doi.org/10.1007/978-3-662-02529-1 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Carlson, Dean A. Haurie, Alain Infinite Horizon Optimal Control Theory and Applications Economic Theory/Quantitative Economics/Mathematical Methods Economic theory Kontrolltheorie (DE-588)4032317-1 gnd Optimale Kontrolle (DE-588)4121428-6 gnd Zeitverhalten (DE-588)4238464-3 gnd |
subject_GND | (DE-588)4032317-1 (DE-588)4121428-6 (DE-588)4238464-3 |
title | Infinite Horizon Optimal Control Theory and Applications |
title_auth | Infinite Horizon Optimal Control Theory and Applications |
title_exact_search | Infinite Horizon Optimal Control Theory and Applications |
title_exact_search_txtP | Infinite Horizon Optimal Control Theory and Applications |
title_full | Infinite Horizon Optimal Control Theory and Applications by Dean A. Carlson, Alain Haurie |
title_fullStr | Infinite Horizon Optimal Control Theory and Applications by Dean A. Carlson, Alain Haurie |
title_full_unstemmed | Infinite Horizon Optimal Control Theory and Applications by Dean A. Carlson, Alain Haurie |
title_short | Infinite Horizon Optimal Control |
title_sort | infinite horizon optimal control theory and applications |
title_sub | Theory and Applications |
topic | Economic Theory/Quantitative Economics/Mathematical Methods Economic theory Kontrolltheorie (DE-588)4032317-1 gnd Optimale Kontrolle (DE-588)4121428-6 gnd Zeitverhalten (DE-588)4238464-3 gnd |
topic_facet | Economic Theory/Quantitative Economics/Mathematical Methods Economic theory Kontrolltheorie Optimale Kontrolle Zeitverhalten |
url | https://doi.org/10.1007/978-3-662-02529-1 |
work_keys_str_mv | AT carlsondeana infinitehorizonoptimalcontroltheoryandapplications AT hauriealain infinitehorizonoptimalcontroltheoryandapplications |