Foundations of Optimization:
Current1y there is a vast amount of literature on nonlinear programming in finite dimensions. The pub1ications deal with convex analysis and severa1 aspects of optimization. On the conditions of optima1ity they deal mainly with generali- tions of known results to more general problems and also with...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1976
|
Ausgabe: | 1st ed. 1976 |
Schriftenreihe: | Lecture Notes in Economics and Mathematical Systems
122 |
Schlagworte: | |
Online-Zugang: | BTU01 Volltext |
Zusammenfassung: | Current1y there is a vast amount of literature on nonlinear programming in finite dimensions. The pub1ications deal with convex analysis and severa1 aspects of optimization. On the conditions of optima1ity they deal mainly with generali- tions of known results to more general problems and also with less restrictive assumptions. There are also more general results dealing with duality. There are yet other important publications dealing with algorithmic deve10pment and their applications. This book is intended for researchers in nonlinear programming, and deals mainly with convex analysis, optimality conditions and duality in nonlinear programming. It consolidates the classic results in this area and some of the recent results. The book has been divided into two parts. The first part gives a very comp- hensive background material. Assuming a background of matrix algebra and a senior level course in Analysis, the first part on convex analysis is self-contained, and develops some important results needed for subsequent chapters. The second part deals with optimality conditions and duality. The results are developed using extensively the properties of cones discussed in the first part. This has faci- tated derivations of optimality conditions for equality and inequality constrained problems. Further, minimum-principle type conditions are derived under less restrictive assumptions. We also discuss constraint qualifications and treat some of the more general duality theory in nonlinear programming |
Beschreibung: | 1 Online-Ressource (VI, 193 p) |
ISBN: | 9783642482946 |
DOI: | 10.1007/978-3-642-48294-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV046871733 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 200828s1976 |||| o||u| ||||||eng d | ||
020 | |a 9783642482946 |9 978-3-642-48294-6 | ||
024 | 7 | |a 10.1007/978-3-642-48294-6 |2 doi | |
035 | |a (ZDB-2-SBE)978-3-642-48294-6 | ||
035 | |a (OCoLC)1193308643 | ||
035 | |a (DE-599)BVBBV046871733 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
082 | 0 | |a 658.40301 |2 23 | |
084 | |a QH 400 |0 (DE-625)141571: |2 rvk | ||
084 | |a QH 420 |0 (DE-625)141574: |2 rvk | ||
084 | |a SI 853 |0 (DE-625)143200: |2 rvk | ||
084 | |a SK 870 |0 (DE-625)143265: |2 rvk | ||
100 | 1 | |a Bazaraa, M. S. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Foundations of Optimization |c by M. S. Bazaraa, C. M. Shetty |
250 | |a 1st ed. 1976 | ||
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1976 | |
300 | |a 1 Online-Ressource (VI, 193 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Lecture Notes in Economics and Mathematical Systems |v 122 | |
520 | |a Current1y there is a vast amount of literature on nonlinear programming in finite dimensions. The pub1ications deal with convex analysis and severa1 aspects of optimization. On the conditions of optima1ity they deal mainly with generali- tions of known results to more general problems and also with less restrictive assumptions. There are also more general results dealing with duality. There are yet other important publications dealing with algorithmic deve10pment and their applications. This book is intended for researchers in nonlinear programming, and deals mainly with convex analysis, optimality conditions and duality in nonlinear programming. It consolidates the classic results in this area and some of the recent results. The book has been divided into two parts. The first part gives a very comp- hensive background material. Assuming a background of matrix algebra and a senior level course in Analysis, the first part on convex analysis is self-contained, and develops some important results needed for subsequent chapters. The second part deals with optimality conditions and duality. The results are developed using extensively the properties of cones discussed in the first part. This has faci- tated derivations of optimality conditions for equality and inequality constrained problems. Further, minimum-principle type conditions are derived under less restrictive assumptions. We also discuss constraint qualifications and treat some of the more general duality theory in nonlinear programming | ||
650 | 4 | |a Operations Research/Decision Theory | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Operations research | |
650 | 4 | |a Decision making | |
650 | 4 | |a Mathematics | |
650 | 0 | 7 | |a Dimension n |0 (DE-588)4309313-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare Optimierung |0 (DE-588)4128192-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Raum |g Mathematik |0 (DE-588)4124030-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematik |0 (DE-588)4037944-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Optimierung |0 (DE-588)4043664-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Optimierung |0 (DE-588)4043664-0 |D s |
689 | 0 | 1 | |a Raum |g Mathematik |0 (DE-588)4124030-3 |D s |
689 | 0 | 2 | |a Dimension n |0 (DE-588)4309313-9 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Mathematik |0 (DE-588)4037944-9 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Nichtlineare Optimierung |0 (DE-588)4128192-5 |D s |
689 | 2 | |5 DE-604 | |
700 | 1 | |a Shetty, C. M. |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783540076803 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783642482953 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-48294-6 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SBE |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SBE_Archiv | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032281865 | ||
966 | e | |u https://doi.org/10.1007/978-3-642-48294-6 |l BTU01 |p ZDB-2-SBE |q ZDB-2-SBE_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181719901798400 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Bazaraa, M. S. Shetty, C. M. |
author_facet | Bazaraa, M. S. Shetty, C. M. |
author_role | aut aut |
author_sort | Bazaraa, M. S. |
author_variant | m s b ms msb c m s cm cms |
building | Verbundindex |
bvnumber | BV046871733 |
classification_rvk | QH 400 QH 420 SI 853 SK 870 |
collection | ZDB-2-SBE ZDB-2-BAE |
ctrlnum | (ZDB-2-SBE)978-3-642-48294-6 (OCoLC)1193308643 (DE-599)BVBBV046871733 |
dewey-full | 658.40301 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 658 - General management |
dewey-raw | 658.40301 |
dewey-search | 658.40301 |
dewey-sort | 3658.40301 |
dewey-tens | 650 - Management and auxiliary services |
discipline | Mathematik Wirtschaftswissenschaften |
discipline_str_mv | Mathematik Wirtschaftswissenschaften |
doi_str_mv | 10.1007/978-3-642-48294-6 |
edition | 1st ed. 1976 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03998nmm a2200673zcb4500</leader><controlfield tag="001">BV046871733</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200828s1976 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642482946</subfield><subfield code="9">978-3-642-48294-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-48294-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SBE)978-3-642-48294-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1193308643</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046871733</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">658.40301</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 400</subfield><subfield code="0">(DE-625)141571:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 420</subfield><subfield code="0">(DE-625)141574:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 853</subfield><subfield code="0">(DE-625)143200:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 870</subfield><subfield code="0">(DE-625)143265:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bazaraa, M. S.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Foundations of Optimization</subfield><subfield code="c">by M. S. Bazaraa, C. M. Shetty</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 1976</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1976</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VI, 193 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lecture Notes in Economics and Mathematical Systems</subfield><subfield code="v">122</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Current1y there is a vast amount of literature on nonlinear programming in finite dimensions. The pub1ications deal with convex analysis and severa1 aspects of optimization. On the conditions of optima1ity they deal mainly with generali- tions of known results to more general problems and also with less restrictive assumptions. There are also more general results dealing with duality. There are yet other important publications dealing with algorithmic deve10pment and their applications. This book is intended for researchers in nonlinear programming, and deals mainly with convex analysis, optimality conditions and duality in nonlinear programming. It consolidates the classic results in this area and some of the recent results. The book has been divided into two parts. The first part gives a very comp- hensive background material. Assuming a background of matrix algebra and a senior level course in Analysis, the first part on convex analysis is self-contained, and develops some important results needed for subsequent chapters. The second part deals with optimality conditions and duality. The results are developed using extensively the properties of cones discussed in the first part. This has faci- tated derivations of optimality conditions for equality and inequality constrained problems. Further, minimum-principle type conditions are derived under less restrictive assumptions. We also discuss constraint qualifications and treat some of the more general duality theory in nonlinear programming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations Research/Decision Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decision making</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dimension n</subfield><subfield code="0">(DE-588)4309313-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Optimierung</subfield><subfield code="0">(DE-588)4128192-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Raum</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4124030-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optimierung</subfield><subfield code="0">(DE-588)4043664-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Optimierung</subfield><subfield code="0">(DE-588)4043664-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Raum</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4124030-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Dimension n</subfield><subfield code="0">(DE-588)4309313-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Nichtlineare Optimierung</subfield><subfield code="0">(DE-588)4128192-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shetty, C. M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783540076803</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783642482953</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-48294-6</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SBE</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SBE_Archiv</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032281865</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-48294-6</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SBE</subfield><subfield code="q">ZDB-2-SBE_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046871733 |
illustrated | Not Illustrated |
index_date | 2024-07-03T15:15:36Z |
indexdate | 2024-07-10T08:56:08Z |
institution | BVB |
isbn | 9783642482946 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032281865 |
oclc_num | 1193308643 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | 1 Online-Ressource (VI, 193 p) |
psigel | ZDB-2-SBE ZDB-2-BAE ZDB-2-SBE_Archiv ZDB-2-SBE ZDB-2-SBE_Archiv |
publishDate | 1976 |
publishDateSearch | 1976 |
publishDateSort | 1976 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Lecture Notes in Economics and Mathematical Systems |
spelling | Bazaraa, M. S. Verfasser aut Foundations of Optimization by M. S. Bazaraa, C. M. Shetty 1st ed. 1976 Berlin, Heidelberg Springer Berlin Heidelberg 1976 1 Online-Ressource (VI, 193 p) txt rdacontent c rdamedia cr rdacarrier Lecture Notes in Economics and Mathematical Systems 122 Current1y there is a vast amount of literature on nonlinear programming in finite dimensions. The pub1ications deal with convex analysis and severa1 aspects of optimization. On the conditions of optima1ity they deal mainly with generali- tions of known results to more general problems and also with less restrictive assumptions. There are also more general results dealing with duality. There are yet other important publications dealing with algorithmic deve10pment and their applications. This book is intended for researchers in nonlinear programming, and deals mainly with convex analysis, optimality conditions and duality in nonlinear programming. It consolidates the classic results in this area and some of the recent results. The book has been divided into two parts. The first part gives a very comp- hensive background material. Assuming a background of matrix algebra and a senior level course in Analysis, the first part on convex analysis is self-contained, and develops some important results needed for subsequent chapters. The second part deals with optimality conditions and duality. The results are developed using extensively the properties of cones discussed in the first part. This has faci- tated derivations of optimality conditions for equality and inequality constrained problems. Further, minimum-principle type conditions are derived under less restrictive assumptions. We also discuss constraint qualifications and treat some of the more general duality theory in nonlinear programming Operations Research/Decision Theory Mathematics, general Operations research Decision making Mathematics Dimension n (DE-588)4309313-9 gnd rswk-swf Nichtlineare Optimierung (DE-588)4128192-5 gnd rswk-swf Raum Mathematik (DE-588)4124030-3 gnd rswk-swf Mathematik (DE-588)4037944-9 gnd rswk-swf Optimierung (DE-588)4043664-0 gnd rswk-swf Optimierung (DE-588)4043664-0 s Raum Mathematik (DE-588)4124030-3 s Dimension n (DE-588)4309313-9 s DE-604 Mathematik (DE-588)4037944-9 s Nichtlineare Optimierung (DE-588)4128192-5 s Shetty, C. M. aut Erscheint auch als Druck-Ausgabe 9783540076803 Erscheint auch als Druck-Ausgabe 9783642482953 https://doi.org/10.1007/978-3-642-48294-6 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Bazaraa, M. S. Shetty, C. M. Foundations of Optimization Operations Research/Decision Theory Mathematics, general Operations research Decision making Mathematics Dimension n (DE-588)4309313-9 gnd Nichtlineare Optimierung (DE-588)4128192-5 gnd Raum Mathematik (DE-588)4124030-3 gnd Mathematik (DE-588)4037944-9 gnd Optimierung (DE-588)4043664-0 gnd |
subject_GND | (DE-588)4309313-9 (DE-588)4128192-5 (DE-588)4124030-3 (DE-588)4037944-9 (DE-588)4043664-0 |
title | Foundations of Optimization |
title_auth | Foundations of Optimization |
title_exact_search | Foundations of Optimization |
title_exact_search_txtP | Foundations of Optimization |
title_full | Foundations of Optimization by M. S. Bazaraa, C. M. Shetty |
title_fullStr | Foundations of Optimization by M. S. Bazaraa, C. M. Shetty |
title_full_unstemmed | Foundations of Optimization by M. S. Bazaraa, C. M. Shetty |
title_short | Foundations of Optimization |
title_sort | foundations of optimization |
topic | Operations Research/Decision Theory Mathematics, general Operations research Decision making Mathematics Dimension n (DE-588)4309313-9 gnd Nichtlineare Optimierung (DE-588)4128192-5 gnd Raum Mathematik (DE-588)4124030-3 gnd Mathematik (DE-588)4037944-9 gnd Optimierung (DE-588)4043664-0 gnd |
topic_facet | Operations Research/Decision Theory Mathematics, general Operations research Decision making Mathematics Dimension n Nichtlineare Optimierung Raum Mathematik Mathematik Optimierung |
url | https://doi.org/10.1007/978-3-642-48294-6 |
work_keys_str_mv | AT bazaraams foundationsofoptimization AT shettycm foundationsofoptimization |