Minimax Algebra:
A number of different problems of interest to the operational researcher and the mathematical economist - for example, certain problems of optimization on graphs and networks, of machine-scheduling, of convex analysis and of approx imation theory - can be formulated in a convenient way using the al...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1979
|
Ausgabe: | 1st ed. 1979 |
Schriftenreihe: | Lecture Notes in Economics and Mathematical Systems
166 |
Schlagworte: | |
Online-Zugang: | BTU01 Volltext |
Zusammenfassung: | A number of different problems of interest to the operational researcher and the mathematical economist - for example, certain problems of optimization on graphs and networks, of machine-scheduling, of convex analysis and of approx imation theory - can be formulated in a convenient way using the algebraic structure (R,$,@) where we may think of R as the (extended) real-number system with the binary combining operations x$y, xy defined to be max(x,y),(x+y) respectively. The use of this algebraic structure gives these problems the character of problems of linear algebra, or linear operator theory. This fact hB.s been independently discovered by a number of people working in various fields and in different notations, and the starting-point for the present Lecture Notes was the writer's persuasion that the time had arrived to present a unified account of the algebra of linear transformations of spaces of n-tuples over (R,$,),to demonstrate its relevance to operational research and to give solutions to the standard linear-algebraic problems which arise - e.g. the solution of linear equations exactly or approximately, the eigenvector eigenvalue problem andso on.Some of this material contains results of hitherto unpublished research carried out by the writer during the years 1970-1977 |
Beschreibung: | 1 Online-Ressource (XI, 258 p) |
ISBN: | 9783642487088 |
DOI: | 10.1007/978-3-642-48708-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV046871707 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 200828s1979 |||| o||u| ||||||eng d | ||
020 | |a 9783642487088 |9 978-3-642-48708-8 | ||
024 | 7 | |a 10.1007/978-3-642-48708-8 |2 doi | |
035 | |a (ZDB-2-SBE)978-3-642-48708-8 | ||
035 | |a (OCoLC)863974693 | ||
035 | |a (DE-599)BVBBV046871707 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
082 | 0 | |a 330.1 |2 23 | |
084 | |a QH 140 |0 (DE-625)141533: |2 rvk | ||
084 | |a QH 425 |0 (DE-625)141579: |2 rvk | ||
084 | |a SI 853 |0 (DE-625)143200: |2 rvk | ||
084 | |a SK 870 |0 (DE-625)143265: |2 rvk | ||
100 | 1 | |a Cuninghame-Green, R. A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Minimax Algebra |c by R. A. Cuninghame-Green |
250 | |a 1st ed. 1979 | ||
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1979 | |
300 | |a 1 Online-Ressource (XI, 258 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Lecture Notes in Economics and Mathematical Systems |v 166 | |
520 | |a A number of different problems of interest to the operational researcher and the mathematical economist - for example, certain problems of optimization on graphs and networks, of machine-scheduling, of convex analysis and of approx imation theory - can be formulated in a convenient way using the algebraic structure (R,$,@) where we may think of R as the (extended) real-number system with the binary combining operations x$y, xy defined to be max(x,y),(x+y) respectively. The use of this algebraic structure gives these problems the character of problems of linear algebra, or linear operator theory. This fact hB.s been independently discovered by a number of people working in various fields and in different notations, and the starting-point for the present Lecture Notes was the writer's persuasion that the time had arrived to present a unified account of the algebra of linear transformations of spaces of n-tuples over (R,$,),to demonstrate its relevance to operational research and to give solutions to the standard linear-algebraic problems which arise - e.g. the solution of linear equations exactly or approximately, the eigenvector eigenvalue problem andso on.Some of this material contains results of hitherto unpublished research carried out by the writer during the years 1970-1977 | ||
650 | 4 | |a Economic Theory/Quantitative Economics/Mathematical Methods | |
650 | 4 | |a Economic theory | |
650 | 0 | 7 | |a Lineare Algebra |0 (DE-588)4035811-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Minimum-Maximum-Prinzip |0 (DE-588)4170060-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Minimum-Maximum-Prinzip |0 (DE-588)4170060-0 |D s |
689 | 0 | 1 | |a Lineare Algebra |0 (DE-588)4035811-2 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783540091134 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783642487095 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-48708-8 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SBE |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SBE_Archiv | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032281839 | ||
966 | e | |u https://doi.org/10.1007/978-3-642-48708-8 |l BTU01 |p ZDB-2-SBE |q ZDB-2-SBE_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181719855661056 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Cuninghame-Green, R. A. |
author_facet | Cuninghame-Green, R. A. |
author_role | aut |
author_sort | Cuninghame-Green, R. A. |
author_variant | r a c g rac racg |
building | Verbundindex |
bvnumber | BV046871707 |
classification_rvk | QH 140 QH 425 SI 853 SK 870 |
collection | ZDB-2-SBE ZDB-2-BAE |
ctrlnum | (ZDB-2-SBE)978-3-642-48708-8 (OCoLC)863974693 (DE-599)BVBBV046871707 |
dewey-full | 330.1 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 330 - Economics |
dewey-raw | 330.1 |
dewey-search | 330.1 |
dewey-sort | 3330.1 |
dewey-tens | 330 - Economics |
discipline | Mathematik Wirtschaftswissenschaften |
discipline_str_mv | Mathematik Wirtschaftswissenschaften |
doi_str_mv | 10.1007/978-3-642-48708-8 |
edition | 1st ed. 1979 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03276nmm a2200529zcb4500</leader><controlfield tag="001">BV046871707</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200828s1979 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642487088</subfield><subfield code="9">978-3-642-48708-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-48708-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SBE)978-3-642-48708-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863974693</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046871707</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">330.1</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 140</subfield><subfield code="0">(DE-625)141533:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 425</subfield><subfield code="0">(DE-625)141579:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 853</subfield><subfield code="0">(DE-625)143200:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 870</subfield><subfield code="0">(DE-625)143265:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cuninghame-Green, R. A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Minimax Algebra</subfield><subfield code="c">by R. A. Cuninghame-Green</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 1979</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1979</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 258 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lecture Notes in Economics and Mathematical Systems</subfield><subfield code="v">166</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A number of different problems of interest to the operational researcher and the mathematical economist - for example, certain problems of optimization on graphs and networks, of machine-scheduling, of convex analysis and of approx imation theory - can be formulated in a convenient way using the algebraic structure (R,$,@) where we may think of R as the (extended) real-number system with the binary combining operations x$y, xy defined to be max(x,y),(x+y) respectively. The use of this algebraic structure gives these problems the character of problems of linear algebra, or linear operator theory. This fact hB.s been independently discovered by a number of people working in various fields and in different notations, and the starting-point for the present Lecture Notes was the writer's persuasion that the time had arrived to present a unified account of the algebra of linear transformations of spaces of n-tuples over (R,$,),to demonstrate its relevance to operational research and to give solutions to the standard linear-algebraic problems which arise - e.g. the solution of linear equations exactly or approximately, the eigenvector eigenvalue problem andso on.Some of this material contains results of hitherto unpublished research carried out by the writer during the years 1970-1977</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economic Theory/Quantitative Economics/Mathematical Methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economic theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare Algebra</subfield><subfield code="0">(DE-588)4035811-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Minimum-Maximum-Prinzip</subfield><subfield code="0">(DE-588)4170060-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Minimum-Maximum-Prinzip</subfield><subfield code="0">(DE-588)4170060-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Lineare Algebra</subfield><subfield code="0">(DE-588)4035811-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783540091134</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783642487095</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-48708-8</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SBE</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SBE_Archiv</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032281839</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-48708-8</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SBE</subfield><subfield code="q">ZDB-2-SBE_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046871707 |
illustrated | Not Illustrated |
index_date | 2024-07-03T15:15:36Z |
indexdate | 2024-07-10T08:56:08Z |
institution | BVB |
isbn | 9783642487088 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032281839 |
oclc_num | 863974693 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | 1 Online-Ressource (XI, 258 p) |
psigel | ZDB-2-SBE ZDB-2-BAE ZDB-2-SBE_Archiv ZDB-2-SBE ZDB-2-SBE_Archiv |
publishDate | 1979 |
publishDateSearch | 1979 |
publishDateSort | 1979 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Lecture Notes in Economics and Mathematical Systems |
spelling | Cuninghame-Green, R. A. Verfasser aut Minimax Algebra by R. A. Cuninghame-Green 1st ed. 1979 Berlin, Heidelberg Springer Berlin Heidelberg 1979 1 Online-Ressource (XI, 258 p) txt rdacontent c rdamedia cr rdacarrier Lecture Notes in Economics and Mathematical Systems 166 A number of different problems of interest to the operational researcher and the mathematical economist - for example, certain problems of optimization on graphs and networks, of machine-scheduling, of convex analysis and of approx imation theory - can be formulated in a convenient way using the algebraic structure (R,$,@) where we may think of R as the (extended) real-number system with the binary combining operations x$y, xy defined to be max(x,y),(x+y) respectively. The use of this algebraic structure gives these problems the character of problems of linear algebra, or linear operator theory. This fact hB.s been independently discovered by a number of people working in various fields and in different notations, and the starting-point for the present Lecture Notes was the writer's persuasion that the time had arrived to present a unified account of the algebra of linear transformations of spaces of n-tuples over (R,$,),to demonstrate its relevance to operational research and to give solutions to the standard linear-algebraic problems which arise - e.g. the solution of linear equations exactly or approximately, the eigenvector eigenvalue problem andso on.Some of this material contains results of hitherto unpublished research carried out by the writer during the years 1970-1977 Economic Theory/Quantitative Economics/Mathematical Methods Economic theory Lineare Algebra (DE-588)4035811-2 gnd rswk-swf Minimum-Maximum-Prinzip (DE-588)4170060-0 gnd rswk-swf Minimum-Maximum-Prinzip (DE-588)4170060-0 s Lineare Algebra (DE-588)4035811-2 s DE-604 Erscheint auch als Druck-Ausgabe 9783540091134 Erscheint auch als Druck-Ausgabe 9783642487095 https://doi.org/10.1007/978-3-642-48708-8 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Cuninghame-Green, R. A. Minimax Algebra Economic Theory/Quantitative Economics/Mathematical Methods Economic theory Lineare Algebra (DE-588)4035811-2 gnd Minimum-Maximum-Prinzip (DE-588)4170060-0 gnd |
subject_GND | (DE-588)4035811-2 (DE-588)4170060-0 |
title | Minimax Algebra |
title_auth | Minimax Algebra |
title_exact_search | Minimax Algebra |
title_exact_search_txtP | Minimax Algebra |
title_full | Minimax Algebra by R. A. Cuninghame-Green |
title_fullStr | Minimax Algebra by R. A. Cuninghame-Green |
title_full_unstemmed | Minimax Algebra by R. A. Cuninghame-Green |
title_short | Minimax Algebra |
title_sort | minimax algebra |
topic | Economic Theory/Quantitative Economics/Mathematical Methods Economic theory Lineare Algebra (DE-588)4035811-2 gnd Minimum-Maximum-Prinzip (DE-588)4170060-0 gnd |
topic_facet | Economic Theory/Quantitative Economics/Mathematical Methods Economic theory Lineare Algebra Minimum-Maximum-Prinzip |
url | https://doi.org/10.1007/978-3-642-48708-8 |
work_keys_str_mv | AT cuninghamegreenra minimaxalgebra |