Inventory-Production Theory: A Linear Policy Approach
The term inventory-production theory is not well defined. It com prises e. g. such models like cash balance models, production smoothing models and pure inventory models. We shall here mainly be concerned with stochastic dynamic problems and shall give exact definitions in the next section. Most of...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1977
|
Ausgabe: | 1st ed. 1977 |
Schriftenreihe: | Lecture Notes in Economics and Mathematical Systems
151 |
Schlagworte: | |
Online-Zugang: | BTU01 Volltext |
Zusammenfassung: | The term inventory-production theory is not well defined. It com prises e. g. such models like cash balance models, production smoothing models and pure inventory models. We shall here mainly be concerned with stochastic dynamic problems and shall give exact definitions in the next section. Most of our work will concentrate on cash balance models. However, production smoothing situations and pure inventory problems will also be investigated. Since we are faced in principle with dynamic stochastic situa tions a dynamic programming approach would be appropriate. This approach, however, due to computational restraints, is limited to only but the simplest models. Therefore, in practice, one ruduces stochastics just in taking forecasts of demand and then treating the problem as a deterministic optimization problem. In addition one often introduces certain safety stocks to safeguard the system from possible forecasting errors. In general, this proce dure is suboptimal. However, there exists one particular situa tion when a separation in a forecasting procedure and a subse quent optimization of the remaining deterministic model is not suboptimal. This is known as the linear-quadratic model, i. e. a model having linear system equations and a quadratic cost crite rion. For this type of model H. A. Simon ~3J and later H. Theil [25J have shown that the above separation property holds. In fact, Simon's and Theil's results are nothing else but what has later and more generally become known to control engineers as Kalman's famous separation principle |
Beschreibung: | 1 Online-Ressource (VI, 118 p) |
ISBN: | 9783642953118 |
DOI: | 10.1007/978-3-642-95311-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV046871705 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 200828s1977 |||| o||u| ||||||eng d | ||
020 | |a 9783642953118 |9 978-3-642-95311-8 | ||
024 | 7 | |a 10.1007/978-3-642-95311-8 |2 doi | |
035 | |a (ZDB-2-SBE)978-3-642-95311-8 | ||
035 | |a (OCoLC)1193306984 | ||
035 | |a (DE-599)BVBBV046871705 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
082 | 0 | |a 658.5 |2 23 | |
084 | |a QP 510 |0 (DE-625)141896: |2 rvk | ||
084 | |a SI 853 |0 (DE-625)143200: |2 rvk | ||
100 | 1 | |a Schneeweiss, C.A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Inventory-Production Theory |b A Linear Policy Approach |c by C.A. Schneeweiss |
250 | |a 1st ed. 1977 | ||
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1977 | |
300 | |a 1 Online-Ressource (VI, 118 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Lecture Notes in Economics and Mathematical Systems |v 151 | |
520 | |a The term inventory-production theory is not well defined. It com prises e. g. such models like cash balance models, production smoothing models and pure inventory models. We shall here mainly be concerned with stochastic dynamic problems and shall give exact definitions in the next section. Most of our work will concentrate on cash balance models. However, production smoothing situations and pure inventory problems will also be investigated. Since we are faced in principle with dynamic stochastic situa tions a dynamic programming approach would be appropriate. This approach, however, due to computational restraints, is limited to only but the simplest models. Therefore, in practice, one ruduces stochastics just in taking forecasts of demand and then treating the problem as a deterministic optimization problem. In addition one often introduces certain safety stocks to safeguard the system from possible forecasting errors. In general, this proce dure is suboptimal. However, there exists one particular situa tion when a separation in a forecasting procedure and a subse quent optimization of the remaining deterministic model is not suboptimal. This is known as the linear-quadratic model, i. e. a model having linear system equations and a quadratic cost crite rion. For this type of model H. A. Simon ~3J and later H. Theil [25J have shown that the above separation property holds. In fact, Simon's and Theil's results are nothing else but what has later and more generally become known to control engineers as Kalman's famous separation principle | ||
650 | 4 | |a Operations Management | |
650 | 4 | |a Operations Research/Decision Theory | |
650 | 4 | |a Production management | |
650 | 4 | |a Operations research | |
650 | 4 | |a Decision making | |
650 | 0 | 7 | |a Operations Research |0 (DE-588)4043586-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Produktionstheorie |0 (DE-588)4121520-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Produktionsplanung |0 (DE-588)4047360-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Operations Research |0 (DE-588)4043586-6 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Produktionstheorie |0 (DE-588)4121520-5 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Produktionsplanung |0 (DE-588)4047360-0 |D s |
689 | 2 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783540084433 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783642953125 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-95311-8 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SBE |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SBE_Archiv | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032281837 | ||
966 | e | |u https://doi.org/10.1007/978-3-642-95311-8 |l BTU01 |p ZDB-2-SBE |q ZDB-2-SBE_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181719852515328 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Schneeweiss, C.A |
author_facet | Schneeweiss, C.A |
author_role | aut |
author_sort | Schneeweiss, C.A |
author_variant | c s cs |
building | Verbundindex |
bvnumber | BV046871705 |
classification_rvk | QP 510 SI 853 |
collection | ZDB-2-SBE ZDB-2-BAE |
ctrlnum | (ZDB-2-SBE)978-3-642-95311-8 (OCoLC)1193306984 (DE-599)BVBBV046871705 |
dewey-full | 658.5 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 658 - General management |
dewey-raw | 658.5 |
dewey-search | 658.5 |
dewey-sort | 3658.5 |
dewey-tens | 650 - Management and auxiliary services |
discipline | Mathematik Wirtschaftswissenschaften |
discipline_str_mv | Mathematik Wirtschaftswissenschaften |
doi_str_mv | 10.1007/978-3-642-95311-8 |
edition | 1st ed. 1977 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03743nmm a2200589zcb4500</leader><controlfield tag="001">BV046871705</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200828s1977 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642953118</subfield><subfield code="9">978-3-642-95311-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-95311-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SBE)978-3-642-95311-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1193306984</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046871705</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">658.5</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QP 510</subfield><subfield code="0">(DE-625)141896:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 853</subfield><subfield code="0">(DE-625)143200:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schneeweiss, C.A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Inventory-Production Theory</subfield><subfield code="b">A Linear Policy Approach</subfield><subfield code="c">by C.A. Schneeweiss</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 1977</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1977</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VI, 118 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lecture Notes in Economics and Mathematical Systems</subfield><subfield code="v">151</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The term inventory-production theory is not well defined. It com prises e. g. such models like cash balance models, production smoothing models and pure inventory models. We shall here mainly be concerned with stochastic dynamic problems and shall give exact definitions in the next section. Most of our work will concentrate on cash balance models. However, production smoothing situations and pure inventory problems will also be investigated. Since we are faced in principle with dynamic stochastic situa tions a dynamic programming approach would be appropriate. This approach, however, due to computational restraints, is limited to only but the simplest models. Therefore, in practice, one ruduces stochastics just in taking forecasts of demand and then treating the problem as a deterministic optimization problem. In addition one often introduces certain safety stocks to safeguard the system from possible forecasting errors. In general, this proce dure is suboptimal. However, there exists one particular situa tion when a separation in a forecasting procedure and a subse quent optimization of the remaining deterministic model is not suboptimal. This is known as the linear-quadratic model, i. e. a model having linear system equations and a quadratic cost crite rion. For this type of model H. A. Simon ~3J and later H. Theil [25J have shown that the above separation property holds. In fact, Simon's and Theil's results are nothing else but what has later and more generally become known to control engineers as Kalman's famous separation principle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations Management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations Research/Decision Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Production management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decision making</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Operations Research</subfield><subfield code="0">(DE-588)4043586-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Produktionstheorie</subfield><subfield code="0">(DE-588)4121520-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Produktionsplanung</subfield><subfield code="0">(DE-588)4047360-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Operations Research</subfield><subfield code="0">(DE-588)4043586-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Produktionstheorie</subfield><subfield code="0">(DE-588)4121520-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Produktionsplanung</subfield><subfield code="0">(DE-588)4047360-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783540084433</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783642953125</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-95311-8</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SBE</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SBE_Archiv</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032281837</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-95311-8</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SBE</subfield><subfield code="q">ZDB-2-SBE_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046871705 |
illustrated | Not Illustrated |
index_date | 2024-07-03T15:15:36Z |
indexdate | 2024-07-10T08:56:08Z |
institution | BVB |
isbn | 9783642953118 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032281837 |
oclc_num | 1193306984 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | 1 Online-Ressource (VI, 118 p) |
psigel | ZDB-2-SBE ZDB-2-BAE ZDB-2-SBE_Archiv ZDB-2-SBE ZDB-2-SBE_Archiv |
publishDate | 1977 |
publishDateSearch | 1977 |
publishDateSort | 1977 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Lecture Notes in Economics and Mathematical Systems |
spelling | Schneeweiss, C.A. Verfasser aut Inventory-Production Theory A Linear Policy Approach by C.A. Schneeweiss 1st ed. 1977 Berlin, Heidelberg Springer Berlin Heidelberg 1977 1 Online-Ressource (VI, 118 p) txt rdacontent c rdamedia cr rdacarrier Lecture Notes in Economics and Mathematical Systems 151 The term inventory-production theory is not well defined. It com prises e. g. such models like cash balance models, production smoothing models and pure inventory models. We shall here mainly be concerned with stochastic dynamic problems and shall give exact definitions in the next section. Most of our work will concentrate on cash balance models. However, production smoothing situations and pure inventory problems will also be investigated. Since we are faced in principle with dynamic stochastic situa tions a dynamic programming approach would be appropriate. This approach, however, due to computational restraints, is limited to only but the simplest models. Therefore, in practice, one ruduces stochastics just in taking forecasts of demand and then treating the problem as a deterministic optimization problem. In addition one often introduces certain safety stocks to safeguard the system from possible forecasting errors. In general, this proce dure is suboptimal. However, there exists one particular situa tion when a separation in a forecasting procedure and a subse quent optimization of the remaining deterministic model is not suboptimal. This is known as the linear-quadratic model, i. e. a model having linear system equations and a quadratic cost crite rion. For this type of model H. A. Simon ~3J and later H. Theil [25J have shown that the above separation property holds. In fact, Simon's and Theil's results are nothing else but what has later and more generally become known to control engineers as Kalman's famous separation principle Operations Management Operations Research/Decision Theory Production management Operations research Decision making Operations Research (DE-588)4043586-6 gnd rswk-swf Produktionstheorie (DE-588)4121520-5 gnd rswk-swf Produktionsplanung (DE-588)4047360-0 gnd rswk-swf Operations Research (DE-588)4043586-6 s DE-604 Produktionstheorie (DE-588)4121520-5 s Produktionsplanung (DE-588)4047360-0 s Erscheint auch als Druck-Ausgabe 9783540084433 Erscheint auch als Druck-Ausgabe 9783642953125 https://doi.org/10.1007/978-3-642-95311-8 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Schneeweiss, C.A Inventory-Production Theory A Linear Policy Approach Operations Management Operations Research/Decision Theory Production management Operations research Decision making Operations Research (DE-588)4043586-6 gnd Produktionstheorie (DE-588)4121520-5 gnd Produktionsplanung (DE-588)4047360-0 gnd |
subject_GND | (DE-588)4043586-6 (DE-588)4121520-5 (DE-588)4047360-0 |
title | Inventory-Production Theory A Linear Policy Approach |
title_auth | Inventory-Production Theory A Linear Policy Approach |
title_exact_search | Inventory-Production Theory A Linear Policy Approach |
title_exact_search_txtP | Inventory-Production Theory A Linear Policy Approach |
title_full | Inventory-Production Theory A Linear Policy Approach by C.A. Schneeweiss |
title_fullStr | Inventory-Production Theory A Linear Policy Approach by C.A. Schneeweiss |
title_full_unstemmed | Inventory-Production Theory A Linear Policy Approach by C.A. Schneeweiss |
title_short | Inventory-Production Theory |
title_sort | inventory production theory a linear policy approach |
title_sub | A Linear Policy Approach |
topic | Operations Management Operations Research/Decision Theory Production management Operations research Decision making Operations Research (DE-588)4043586-6 gnd Produktionstheorie (DE-588)4121520-5 gnd Produktionsplanung (DE-588)4047360-0 gnd |
topic_facet | Operations Management Operations Research/Decision Theory Production management Operations research Decision making Operations Research Produktionstheorie Produktionsplanung |
url | https://doi.org/10.1007/978-3-642-95311-8 |
work_keys_str_mv | AT schneeweissca inventoryproductiontheoryalinearpolicyapproach |