Optimization and Operations Research: Proceedings of a Conference Held at Oberwolfach, July 27–August 2, 1975
The variable metric algorithm is widely recognised as one of the most efficient ways of solving the following problem:- Locate x* a local minimum point n ( 1) of f(x) x E R Considerable attention has been given to the study of the convergence prop- ties of this algorithm especially for the case wher...
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1976
|
Ausgabe: | 1st ed. 1976 |
Schriftenreihe: | Lecture Notes in Economics and Mathematical Systems
117 |
Schlagworte: | |
Online-Zugang: | BTU01 Volltext |
Zusammenfassung: | The variable metric algorithm is widely recognised as one of the most efficient ways of solving the following problem:- Locate x* a local minimum point n ( 1) of f(x) x E R Considerable attention has been given to the study of the convergence prop- ties of this algorithm especially for the case where analytic expressions are avai- ble for the derivatives g. = af/ax. i 1 ••• n • (2) ~ ~ In particular we shall mention the results of Wolfe (1969) and Powell (1972), (1975). Wolfe established general conditions under which a descent algorithm will converge to a stationary point and Powell showed that two particular very efficient algorithms that cannot be shown to satisfy \,olfe's conditions do in fact converge to the minimum of convex functions under certain conditions. These results will be st- ed more completely in Section 2. In most practical problems analytic expressions for the gradient vector g (Equ. 2) are not available and numerical derivatives are subject to truncation error. In Section 3 we shall consider the effects of these errors on Wolfe's convergent prop- ties and will discuss possible modifications of the algorithms to make them reliable in these circumstances. The effects of rounding error are considered in Section 4, whilst in Section 5 these thoughts are extended to include the case of on-line fu- tion minimisation where each function evaluation is subject to random noise |
Beschreibung: | 1 Online-Ressource (IV, 318 p. 8 illus) |
ISBN: | 9783642463297 |
DOI: | 10.1007/978-3-642-46329-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV046871666 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 200828s1976 |||| o||u| ||||||eng d | ||
020 | |a 9783642463297 |9 978-3-642-46329-7 | ||
024 | 7 | |a 10.1007/978-3-642-46329-7 |2 doi | |
035 | |a (ZDB-2-SBE)978-3-642-46329-7 | ||
035 | |a (OCoLC)863947504 | ||
035 | |a (DE-599)BVBBV046871666 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
082 | 0 | |a 658.40301 |2 23 | |
084 | |a QH 400 |0 (DE-625)141571: |2 rvk | ||
084 | |a QH 420 |0 (DE-625)141574: |2 rvk | ||
084 | |a SI 853 |0 (DE-625)143200: |2 rvk | ||
245 | 1 | 0 | |a Optimization and Operations Research |b Proceedings of a Conference Held at Oberwolfach, July 27–August 2, 1975 |c herausgegeben von W. Oettli, K. Ritter |
250 | |a 1st ed. 1976 | ||
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1976 | |
300 | |a 1 Online-Ressource (IV, 318 p. 8 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Lecture Notes in Economics and Mathematical Systems |v 117 | |
520 | |a The variable metric algorithm is widely recognised as one of the most efficient ways of solving the following problem:- Locate x* a local minimum point n ( 1) of f(x) x E R Considerable attention has been given to the study of the convergence prop- ties of this algorithm especially for the case where analytic expressions are avai- ble for the derivatives g. = af/ax. i 1 ••• n • (2) ~ ~ In particular we shall mention the results of Wolfe (1969) and Powell (1972), (1975). Wolfe established general conditions under which a descent algorithm will converge to a stationary point and Powell showed that two particular very efficient algorithms that cannot be shown to satisfy \,olfe's conditions do in fact converge to the minimum of convex functions under certain conditions. These results will be st- ed more completely in Section 2. In most practical problems analytic expressions for the gradient vector g (Equ. 2) are not available and numerical derivatives are subject to truncation error. In Section 3 we shall consider the effects of these errors on Wolfe's convergent prop- ties and will discuss possible modifications of the algorithms to make them reliable in these circumstances. The effects of rounding error are considered in Section 4, whilst in Section 5 these thoughts are extended to include the case of on-line fu- tion minimisation where each function evaluation is subject to random noise | ||
650 | 4 | |a Operations Research/Decision Theory | |
650 | 4 | |a Operations research | |
650 | 4 | |a Decision making | |
650 | 0 | 7 | |a Optimierung |0 (DE-588)4043664-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Operations Research |0 (DE-588)4043586-6 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)1071861417 |a Konferenzschrift |y 1975 |z Oberwolfach |2 gnd-content | |
689 | 0 | 0 | |a Operations Research |0 (DE-588)4043586-6 |D s |
689 | 0 | 1 | |a Optimierung |0 (DE-588)4043664-0 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Oettli, W. |4 edt | |
700 | 1 | |a Ritter, K. |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783540076162 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783642463303 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-46329-7 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SBE |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SBE_Archiv | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032281798 | ||
966 | e | |u https://doi.org/10.1007/978-3-642-46329-7 |l BTU01 |p ZDB-2-SBE |q ZDB-2-SBE_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181719772823552 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Oettli, W. Ritter, K. |
author2_role | edt edt |
author2_variant | w o wo k r kr |
author_facet | Oettli, W. Ritter, K. |
building | Verbundindex |
bvnumber | BV046871666 |
classification_rvk | QH 400 QH 420 SI 853 |
collection | ZDB-2-SBE ZDB-2-BAE |
ctrlnum | (ZDB-2-SBE)978-3-642-46329-7 (OCoLC)863947504 (DE-599)BVBBV046871666 |
dewey-full | 658.40301 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 658 - General management |
dewey-raw | 658.40301 |
dewey-search | 658.40301 |
dewey-sort | 3658.40301 |
dewey-tens | 650 - Management and auxiliary services |
discipline | Mathematik Wirtschaftswissenschaften |
discipline_str_mv | Mathematik Wirtschaftswissenschaften |
doi_str_mv | 10.1007/978-3-642-46329-7 |
edition | 1st ed. 1976 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03557nmm a2200553zcb4500</leader><controlfield tag="001">BV046871666</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200828s1976 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642463297</subfield><subfield code="9">978-3-642-46329-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-46329-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SBE)978-3-642-46329-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863947504</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046871666</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">658.40301</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 400</subfield><subfield code="0">(DE-625)141571:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 420</subfield><subfield code="0">(DE-625)141574:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 853</subfield><subfield code="0">(DE-625)143200:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimization and Operations Research</subfield><subfield code="b">Proceedings of a Conference Held at Oberwolfach, July 27–August 2, 1975</subfield><subfield code="c">herausgegeben von W. Oettli, K. Ritter</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 1976</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1976</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (IV, 318 p. 8 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lecture Notes in Economics and Mathematical Systems</subfield><subfield code="v">117</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The variable metric algorithm is widely recognised as one of the most efficient ways of solving the following problem:- Locate x* a local minimum point n ( 1) of f(x) x E R Considerable attention has been given to the study of the convergence prop- ties of this algorithm especially for the case where analytic expressions are avai- ble for the derivatives g. = af/ax. i 1 ••• n • (2) ~ ~ In particular we shall mention the results of Wolfe (1969) and Powell (1972), (1975). Wolfe established general conditions under which a descent algorithm will converge to a stationary point and Powell showed that two particular very efficient algorithms that cannot be shown to satisfy \,olfe's conditions do in fact converge to the minimum of convex functions under certain conditions. These results will be st- ed more completely in Section 2. In most practical problems analytic expressions for the gradient vector g (Equ. 2) are not available and numerical derivatives are subject to truncation error. In Section 3 we shall consider the effects of these errors on Wolfe's convergent prop- ties and will discuss possible modifications of the algorithms to make them reliable in these circumstances. The effects of rounding error are considered in Section 4, whilst in Section 5 these thoughts are extended to include the case of on-line fu- tion minimisation where each function evaluation is subject to random noise</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations Research/Decision Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decision making</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optimierung</subfield><subfield code="0">(DE-588)4043664-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Operations Research</subfield><subfield code="0">(DE-588)4043586-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">1975</subfield><subfield code="z">Oberwolfach</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Operations Research</subfield><subfield code="0">(DE-588)4043586-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Optimierung</subfield><subfield code="0">(DE-588)4043664-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Oettli, W.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ritter, K.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783540076162</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783642463303</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-46329-7</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SBE</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SBE_Archiv</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032281798</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-46329-7</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SBE</subfield><subfield code="q">ZDB-2-SBE_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)1071861417 Konferenzschrift 1975 Oberwolfach gnd-content |
genre_facet | Konferenzschrift 1975 Oberwolfach |
id | DE-604.BV046871666 |
illustrated | Not Illustrated |
index_date | 2024-07-03T15:15:36Z |
indexdate | 2024-07-10T08:56:08Z |
institution | BVB |
isbn | 9783642463297 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032281798 |
oclc_num | 863947504 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | 1 Online-Ressource (IV, 318 p. 8 illus) |
psigel | ZDB-2-SBE ZDB-2-BAE ZDB-2-SBE_Archiv ZDB-2-SBE ZDB-2-SBE_Archiv |
publishDate | 1976 |
publishDateSearch | 1976 |
publishDateSort | 1976 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Lecture Notes in Economics and Mathematical Systems |
spelling | Optimization and Operations Research Proceedings of a Conference Held at Oberwolfach, July 27–August 2, 1975 herausgegeben von W. Oettli, K. Ritter 1st ed. 1976 Berlin, Heidelberg Springer Berlin Heidelberg 1976 1 Online-Ressource (IV, 318 p. 8 illus) txt rdacontent c rdamedia cr rdacarrier Lecture Notes in Economics and Mathematical Systems 117 The variable metric algorithm is widely recognised as one of the most efficient ways of solving the following problem:- Locate x* a local minimum point n ( 1) of f(x) x E R Considerable attention has been given to the study of the convergence prop- ties of this algorithm especially for the case where analytic expressions are avai- ble for the derivatives g. = af/ax. i 1 ••• n • (2) ~ ~ In particular we shall mention the results of Wolfe (1969) and Powell (1972), (1975). Wolfe established general conditions under which a descent algorithm will converge to a stationary point and Powell showed that two particular very efficient algorithms that cannot be shown to satisfy \,olfe's conditions do in fact converge to the minimum of convex functions under certain conditions. These results will be st- ed more completely in Section 2. In most practical problems analytic expressions for the gradient vector g (Equ. 2) are not available and numerical derivatives are subject to truncation error. In Section 3 we shall consider the effects of these errors on Wolfe's convergent prop- ties and will discuss possible modifications of the algorithms to make them reliable in these circumstances. The effects of rounding error are considered in Section 4, whilst in Section 5 these thoughts are extended to include the case of on-line fu- tion minimisation where each function evaluation is subject to random noise Operations Research/Decision Theory Operations research Decision making Optimierung (DE-588)4043664-0 gnd rswk-swf Operations Research (DE-588)4043586-6 gnd rswk-swf (DE-588)1071861417 Konferenzschrift 1975 Oberwolfach gnd-content Operations Research (DE-588)4043586-6 s Optimierung (DE-588)4043664-0 s DE-604 Oettli, W. edt Ritter, K. edt Erscheint auch als Druck-Ausgabe 9783540076162 Erscheint auch als Druck-Ausgabe 9783642463303 https://doi.org/10.1007/978-3-642-46329-7 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Optimization and Operations Research Proceedings of a Conference Held at Oberwolfach, July 27–August 2, 1975 Operations Research/Decision Theory Operations research Decision making Optimierung (DE-588)4043664-0 gnd Operations Research (DE-588)4043586-6 gnd |
subject_GND | (DE-588)4043664-0 (DE-588)4043586-6 (DE-588)1071861417 |
title | Optimization and Operations Research Proceedings of a Conference Held at Oberwolfach, July 27–August 2, 1975 |
title_auth | Optimization and Operations Research Proceedings of a Conference Held at Oberwolfach, July 27–August 2, 1975 |
title_exact_search | Optimization and Operations Research Proceedings of a Conference Held at Oberwolfach, July 27–August 2, 1975 |
title_exact_search_txtP | Optimization and Operations Research Proceedings of a Conference Held at Oberwolfach, July 27–August 2, 1975 |
title_full | Optimization and Operations Research Proceedings of a Conference Held at Oberwolfach, July 27–August 2, 1975 herausgegeben von W. Oettli, K. Ritter |
title_fullStr | Optimization and Operations Research Proceedings of a Conference Held at Oberwolfach, July 27–August 2, 1975 herausgegeben von W. Oettli, K. Ritter |
title_full_unstemmed | Optimization and Operations Research Proceedings of a Conference Held at Oberwolfach, July 27–August 2, 1975 herausgegeben von W. Oettli, K. Ritter |
title_short | Optimization and Operations Research |
title_sort | optimization and operations research proceedings of a conference held at oberwolfach july 27 august 2 1975 |
title_sub | Proceedings of a Conference Held at Oberwolfach, July 27–August 2, 1975 |
topic | Operations Research/Decision Theory Operations research Decision making Optimierung (DE-588)4043664-0 gnd Operations Research (DE-588)4043586-6 gnd |
topic_facet | Operations Research/Decision Theory Operations research Decision making Optimierung Operations Research Konferenzschrift 1975 Oberwolfach |
url | https://doi.org/10.1007/978-3-642-46329-7 |
work_keys_str_mv | AT oettliw optimizationandoperationsresearchproceedingsofaconferenceheldatoberwolfachjuly27august21975 AT ritterk optimizationandoperationsresearchproceedingsofaconferenceheldatoberwolfachjuly27august21975 |