Optimal Decisions under Uncertainty:
The theory of optimal decisions in a stochastic environment has seen many new developments in recent years. The implications of such theory for empirical and policy applications are several. This book attempts to analyze some of the impor tant applied aspects of this theory and its recent developme...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1981
|
Ausgabe: | 1st ed. 1981 |
Schriftenreihe: | Lecture Notes in Economics and Mathematical Systems
193 |
Schlagworte: | |
Online-Zugang: | BTU01 Volltext |
Zusammenfassung: | The theory of optimal decisions in a stochastic environment has seen many new developments in recent years. The implications of such theory for empirical and policy applications are several. This book attempts to analyze some of the impor tant applied aspects of this theory and its recent developments. The stochastic environment is considered here in specific form, e.g., (a) linear programs (LP) with parameters subject to a probabilistic mechanism, (b) decision models with risk aversion, (c) resource allocation in a team, and (d) national economic planning. The book attempts to provide new research insights into several areas, e.g., (a) mixed strategy solutions and econometric tests of hypotheses of LP models, (b) the dual problems of efficient estimation and optimal regulation, (c) input-output planning under imperfect competition, and (d) linear programs viewed as constrained statistical games. Methods of optimal decision rules developed here for quadratic and linear decision problems are applicable in three broad areas: (a) applied economic models in resource allocation, planning and team decision, (b) operations research models in management decisions involving portfolio analysis and stochastic programming, and (c) systems science models in stochastic control and adaptive behavior. Some results reported here have been published in professional journals be-. fore, and I would like to thank the following journals in particular: Inter national Journal of Systems Science, Journal of Optimization Theory and Applica tions and Journal of Mathematical Analysis and Applications |
Beschreibung: | 1 Online-Ressource (VII, 161 p) |
ISBN: | 9783642877209 |
DOI: | 10.1007/978-3-642-87720-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV046871581 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 200828s1981 |||| o||u| ||||||eng d | ||
020 | |a 9783642877209 |9 978-3-642-87720-9 | ||
024 | 7 | |a 10.1007/978-3-642-87720-9 |2 doi | |
035 | |a (ZDB-2-SBE)978-3-642-87720-9 | ||
035 | |a (OCoLC)864035490 | ||
035 | |a (DE-599)BVBBV046871581 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
082 | 0 | |a 658.40301 |2 23 | |
084 | |a QC 020 |0 (DE-625)141237: |2 rvk | ||
084 | |a QH 233 |0 (DE-625)141548: |2 rvk | ||
084 | |a SI 853 |0 (DE-625)143200: |2 rvk | ||
100 | 1 | |a Sengupta, J.K. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Optimal Decisions under Uncertainty |c by J.K. Sengupta |
250 | |a 1st ed. 1981 | ||
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1981 | |
300 | |a 1 Online-Ressource (VII, 161 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Lecture Notes in Economics and Mathematical Systems |v 193 | |
520 | |a The theory of optimal decisions in a stochastic environment has seen many new developments in recent years. The implications of such theory for empirical and policy applications are several. This book attempts to analyze some of the impor tant applied aspects of this theory and its recent developments. The stochastic environment is considered here in specific form, e.g., (a) linear programs (LP) with parameters subject to a probabilistic mechanism, (b) decision models with risk aversion, (c) resource allocation in a team, and (d) national economic planning. The book attempts to provide new research insights into several areas, e.g., (a) mixed strategy solutions and econometric tests of hypotheses of LP models, (b) the dual problems of efficient estimation and optimal regulation, (c) input-output planning under imperfect competition, and (d) linear programs viewed as constrained statistical games. Methods of optimal decision rules developed here for quadratic and linear decision problems are applicable in three broad areas: (a) applied economic models in resource allocation, planning and team decision, (b) operations research models in management decisions involving portfolio analysis and stochastic programming, and (c) systems science models in stochastic control and adaptive behavior. Some results reported here have been published in professional journals be-. fore, and I would like to thank the following journals in particular: Inter national Journal of Systems Science, Journal of Optimization Theory and Applica tions and Journal of Mathematical Analysis and Applications | ||
650 | 4 | |a Operations Research/Decision Theory | |
650 | 4 | |a Economic Theory/Quantitative Economics/Mathematical Methods | |
650 | 4 | |a Operations research | |
650 | 4 | |a Decision making | |
650 | 4 | |a Economic theory | |
650 | 0 | 7 | |a Unsicherheit |0 (DE-588)4186957-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Entscheidung bei Unsicherheit |0 (DE-588)4070864-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Entscheidungstheorie |0 (DE-588)4138606-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Management |0 (DE-588)4037278-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Entscheidungsmodell |0 (DE-588)4121201-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Entscheidung bei Unsicherheit |0 (DE-588)4070864-0 |D s |
689 | 0 | 1 | |a Entscheidungsmodell |0 (DE-588)4121201-0 |D s |
689 | 0 | 2 | |a Management |0 (DE-588)4037278-9 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Entscheidung bei Unsicherheit |0 (DE-588)4070864-0 |D s |
689 | 1 | 1 | |a Entscheidungstheorie |0 (DE-588)4138606-1 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Unsicherheit |0 (DE-588)4186957-6 |D s |
689 | 2 | |5 DE-604 | |
689 | 3 | 0 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |D s |
689 | 3 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783540108696 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783642877216 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-87720-9 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SBE |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SBE_Archiv | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032281713 | ||
966 | e | |u https://doi.org/10.1007/978-3-642-87720-9 |l BTU01 |p ZDB-2-SBE |q ZDB-2-SBE_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181719584079872 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Sengupta, J.K |
author_facet | Sengupta, J.K |
author_role | aut |
author_sort | Sengupta, J.K |
author_variant | j s js |
building | Verbundindex |
bvnumber | BV046871581 |
classification_rvk | QC 020 QH 233 SI 853 |
collection | ZDB-2-SBE ZDB-2-BAE |
ctrlnum | (ZDB-2-SBE)978-3-642-87720-9 (OCoLC)864035490 (DE-599)BVBBV046871581 |
dewey-full | 658.40301 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 658 - General management |
dewey-raw | 658.40301 |
dewey-search | 658.40301 |
dewey-sort | 3658.40301 |
dewey-tens | 650 - Management and auxiliary services |
discipline | Mathematik Wirtschaftswissenschaften |
discipline_str_mv | Mathematik Wirtschaftswissenschaften |
doi_str_mv | 10.1007/978-3-642-87720-9 |
edition | 1st ed. 1981 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04306nmm a2200697zcb4500</leader><controlfield tag="001">BV046871581</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200828s1981 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642877209</subfield><subfield code="9">978-3-642-87720-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-87720-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SBE)978-3-642-87720-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864035490</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046871581</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">658.40301</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QC 020</subfield><subfield code="0">(DE-625)141237:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 233</subfield><subfield code="0">(DE-625)141548:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 853</subfield><subfield code="0">(DE-625)143200:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sengupta, J.K.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimal Decisions under Uncertainty</subfield><subfield code="c">by J.K. Sengupta</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 1981</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1981</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VII, 161 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lecture Notes in Economics and Mathematical Systems</subfield><subfield code="v">193</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The theory of optimal decisions in a stochastic environment has seen many new developments in recent years. The implications of such theory for empirical and policy applications are several. This book attempts to analyze some of the impor tant applied aspects of this theory and its recent developments. The stochastic environment is considered here in specific form, e.g., (a) linear programs (LP) with parameters subject to a probabilistic mechanism, (b) decision models with risk aversion, (c) resource allocation in a team, and (d) national economic planning. The book attempts to provide new research insights into several areas, e.g., (a) mixed strategy solutions and econometric tests of hypotheses of LP models, (b) the dual problems of efficient estimation and optimal regulation, (c) input-output planning under imperfect competition, and (d) linear programs viewed as constrained statistical games. Methods of optimal decision rules developed here for quadratic and linear decision problems are applicable in three broad areas: (a) applied economic models in resource allocation, planning and team decision, (b) operations research models in management decisions involving portfolio analysis and stochastic programming, and (c) systems science models in stochastic control and adaptive behavior. Some results reported here have been published in professional journals be-. fore, and I would like to thank the following journals in particular: Inter national Journal of Systems Science, Journal of Optimization Theory and Applica tions and Journal of Mathematical Analysis and Applications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations Research/Decision Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economic Theory/Quantitative Economics/Mathematical Methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decision making</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economic theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Unsicherheit</subfield><subfield code="0">(DE-588)4186957-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Entscheidung bei Unsicherheit</subfield><subfield code="0">(DE-588)4070864-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Entscheidungstheorie</subfield><subfield code="0">(DE-588)4138606-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Management</subfield><subfield code="0">(DE-588)4037278-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Entscheidungsmodell</subfield><subfield code="0">(DE-588)4121201-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Entscheidung bei Unsicherheit</subfield><subfield code="0">(DE-588)4070864-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Entscheidungsmodell</subfield><subfield code="0">(DE-588)4121201-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Management</subfield><subfield code="0">(DE-588)4037278-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Entscheidung bei Unsicherheit</subfield><subfield code="0">(DE-588)4070864-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Entscheidungstheorie</subfield><subfield code="0">(DE-588)4138606-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Unsicherheit</subfield><subfield code="0">(DE-588)4186957-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783540108696</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783642877216</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-87720-9</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SBE</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SBE_Archiv</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032281713</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-87720-9</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SBE</subfield><subfield code="q">ZDB-2-SBE_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046871581 |
illustrated | Not Illustrated |
index_date | 2024-07-03T15:15:36Z |
indexdate | 2024-07-10T08:56:08Z |
institution | BVB |
isbn | 9783642877209 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032281713 |
oclc_num | 864035490 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | 1 Online-Ressource (VII, 161 p) |
psigel | ZDB-2-SBE ZDB-2-BAE ZDB-2-SBE_Archiv ZDB-2-SBE ZDB-2-SBE_Archiv |
publishDate | 1981 |
publishDateSearch | 1981 |
publishDateSort | 1981 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Lecture Notes in Economics and Mathematical Systems |
spelling | Sengupta, J.K. Verfasser aut Optimal Decisions under Uncertainty by J.K. Sengupta 1st ed. 1981 Berlin, Heidelberg Springer Berlin Heidelberg 1981 1 Online-Ressource (VII, 161 p) txt rdacontent c rdamedia cr rdacarrier Lecture Notes in Economics and Mathematical Systems 193 The theory of optimal decisions in a stochastic environment has seen many new developments in recent years. The implications of such theory for empirical and policy applications are several. This book attempts to analyze some of the impor tant applied aspects of this theory and its recent developments. The stochastic environment is considered here in specific form, e.g., (a) linear programs (LP) with parameters subject to a probabilistic mechanism, (b) decision models with risk aversion, (c) resource allocation in a team, and (d) national economic planning. The book attempts to provide new research insights into several areas, e.g., (a) mixed strategy solutions and econometric tests of hypotheses of LP models, (b) the dual problems of efficient estimation and optimal regulation, (c) input-output planning under imperfect competition, and (d) linear programs viewed as constrained statistical games. Methods of optimal decision rules developed here for quadratic and linear decision problems are applicable in three broad areas: (a) applied economic models in resource allocation, planning and team decision, (b) operations research models in management decisions involving portfolio analysis and stochastic programming, and (c) systems science models in stochastic control and adaptive behavior. Some results reported here have been published in professional journals be-. fore, and I would like to thank the following journals in particular: Inter national Journal of Systems Science, Journal of Optimization Theory and Applica tions and Journal of Mathematical Analysis and Applications Operations Research/Decision Theory Economic Theory/Quantitative Economics/Mathematical Methods Operations research Decision making Economic theory Unsicherheit (DE-588)4186957-6 gnd rswk-swf Entscheidung bei Unsicherheit (DE-588)4070864-0 gnd rswk-swf Entscheidungstheorie (DE-588)4138606-1 gnd rswk-swf Management (DE-588)4037278-9 gnd rswk-swf Stochastischer Prozess (DE-588)4057630-9 gnd rswk-swf Entscheidungsmodell (DE-588)4121201-0 gnd rswk-swf Entscheidung bei Unsicherheit (DE-588)4070864-0 s Entscheidungsmodell (DE-588)4121201-0 s Management (DE-588)4037278-9 s DE-604 Entscheidungstheorie (DE-588)4138606-1 s Unsicherheit (DE-588)4186957-6 s Stochastischer Prozess (DE-588)4057630-9 s Erscheint auch als Druck-Ausgabe 9783540108696 Erscheint auch als Druck-Ausgabe 9783642877216 https://doi.org/10.1007/978-3-642-87720-9 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Sengupta, J.K Optimal Decisions under Uncertainty Operations Research/Decision Theory Economic Theory/Quantitative Economics/Mathematical Methods Operations research Decision making Economic theory Unsicherheit (DE-588)4186957-6 gnd Entscheidung bei Unsicherheit (DE-588)4070864-0 gnd Entscheidungstheorie (DE-588)4138606-1 gnd Management (DE-588)4037278-9 gnd Stochastischer Prozess (DE-588)4057630-9 gnd Entscheidungsmodell (DE-588)4121201-0 gnd |
subject_GND | (DE-588)4186957-6 (DE-588)4070864-0 (DE-588)4138606-1 (DE-588)4037278-9 (DE-588)4057630-9 (DE-588)4121201-0 |
title | Optimal Decisions under Uncertainty |
title_auth | Optimal Decisions under Uncertainty |
title_exact_search | Optimal Decisions under Uncertainty |
title_exact_search_txtP | Optimal Decisions under Uncertainty |
title_full | Optimal Decisions under Uncertainty by J.K. Sengupta |
title_fullStr | Optimal Decisions under Uncertainty by J.K. Sengupta |
title_full_unstemmed | Optimal Decisions under Uncertainty by J.K. Sengupta |
title_short | Optimal Decisions under Uncertainty |
title_sort | optimal decisions under uncertainty |
topic | Operations Research/Decision Theory Economic Theory/Quantitative Economics/Mathematical Methods Operations research Decision making Economic theory Unsicherheit (DE-588)4186957-6 gnd Entscheidung bei Unsicherheit (DE-588)4070864-0 gnd Entscheidungstheorie (DE-588)4138606-1 gnd Management (DE-588)4037278-9 gnd Stochastischer Prozess (DE-588)4057630-9 gnd Entscheidungsmodell (DE-588)4121201-0 gnd |
topic_facet | Operations Research/Decision Theory Economic Theory/Quantitative Economics/Mathematical Methods Operations research Decision making Economic theory Unsicherheit Entscheidung bei Unsicherheit Entscheidungstheorie Management Stochastischer Prozess Entscheidungsmodell |
url | https://doi.org/10.1007/978-3-642-87720-9 |
work_keys_str_mv | AT senguptajk optimaldecisionsunderuncertainty |