Degeneracy Graphs and the Neighbourhood Problem:
A few years ago nobody would have anticipated that in connection with degeneracy in Linear Programming quite a new field. could originate. In 1976 a very simple question has been posed: in the case an extreme pOint (EP) of a polytope is degenerate and the task is to find all neighbouring EP's...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1986
|
Ausgabe: | 1st ed. 1986 |
Schriftenreihe: | Lecture Notes in Economics and Mathematical Systems
260 |
Schlagworte: | |
Online-Zugang: | BTU01 Volltext |
Zusammenfassung: | A few years ago nobody would have anticipated that in connection with degeneracy in Linear Programming quite a new field. could originate. In 1976 a very simple question has been posed: in the case an extreme pOint (EP) of a polytope is degenerate and the task is to find all neighbouring EP's of the degenerate EP, is it necessary to determine all basic solutions of the corresponding equalities system associated with the degenerate EP -in order to be certain to determine all neighbours of this EP? This question implied another one: Does there exists a subset of the mentioned set of basic solutions such that it suffices to find such a subset in order to determine all neighbours? The first step to solve these questions (which are motivated in the first Chapter of this book) was to define a graph (called degeneracy graph) the nodes of which correspond to the basic solutions. It turned out that such a graph has some special properties and in order to solve the above questions firstly these properties had to be investigated. Also the structure of degeneracy graphs playes hereby an important role. Because the theory of degeneracy graphs was quite new, it was necessary to elaborate first a completely new terminology and to define new notions. Dr |
Beschreibung: | 1 Online-Ressource (VIII, 132 p. 15 illus) |
ISBN: | 9783642492709 |
DOI: | 10.1007/978-3-642-49270-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV046871338 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 200828s1986 |||| o||u| ||||||eng d | ||
020 | |a 9783642492709 |9 978-3-642-49270-9 | ||
024 | 7 | |a 10.1007/978-3-642-49270-9 |2 doi | |
035 | |a (ZDB-2-SBE)978-3-642-49270-9 | ||
035 | |a (OCoLC)863989971 | ||
035 | |a (DE-599)BVBBV046871338 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
082 | 0 | |a 658.40301 |2 23 | |
084 | |a QH 400 |0 (DE-625)141571: |2 rvk | ||
084 | |a QH 451 |0 (DE-625)141594: |2 rvk | ||
084 | |a SI 853 |0 (DE-625)143200: |2 rvk | ||
100 | 1 | |a Kruse, H.-J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Degeneracy Graphs and the Neighbourhood Problem |c by H.-J. Kruse |
250 | |a 1st ed. 1986 | ||
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1986 | |
300 | |a 1 Online-Ressource (VIII, 132 p. 15 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Lecture Notes in Economics and Mathematical Systems |v 260 | |
520 | |a A few years ago nobody would have anticipated that in connection with degeneracy in Linear Programming quite a new field. could originate. In 1976 a very simple question has been posed: in the case an extreme pOint (EP) of a polytope is degenerate and the task is to find all neighbouring EP's of the degenerate EP, is it necessary to determine all basic solutions of the corresponding equalities system associated with the degenerate EP -in order to be certain to determine all neighbours of this EP? This question implied another one: Does there exists a subset of the mentioned set of basic solutions such that it suffices to find such a subset in order to determine all neighbours? The first step to solve these questions (which are motivated in the first Chapter of this book) was to define a graph (called degeneracy graph) the nodes of which correspond to the basic solutions. It turned out that such a graph has some special properties and in order to solve the above questions firstly these properties had to be investigated. Also the structure of degeneracy graphs playes hereby an important role. Because the theory of degeneracy graphs was quite new, it was necessary to elaborate first a completely new terminology and to define new notions. Dr | ||
650 | 4 | |a Operations Research/Decision Theory | |
650 | 4 | |a Operations research | |
650 | 4 | |a Decision making | |
650 | 0 | 7 | |a Extremwert |0 (DE-588)4137272-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nachbarschaftsproblem |0 (DE-588)4120782-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lineare Optimierung |0 (DE-588)4035816-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Graphentheorie |0 (DE-588)4113782-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Entartungsgraph |0 (DE-588)4121198-4 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Entartungsgraph |0 (DE-588)4121198-4 |D s |
689 | 0 | 1 | |a Nachbarschaftsproblem |0 (DE-588)4120782-8 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Extremwert |0 (DE-588)4137272-4 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Lineare Optimierung |0 (DE-588)4035816-1 |D s |
689 | 2 | |5 DE-604 | |
689 | 3 | 0 | |a Graphentheorie |0 (DE-588)4113782-6 |D s |
689 | 3 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783540160496 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783642492716 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-49270-9 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SBE |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SBE_Archiv | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032281469 | ||
966 | e | |u https://doi.org/10.1007/978-3-642-49270-9 |l BTU01 |p ZDB-2-SBE |q ZDB-2-SBE_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181719016800256 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Kruse, H.-J |
author_facet | Kruse, H.-J |
author_role | aut |
author_sort | Kruse, H.-J |
author_variant | h j k hjk |
building | Verbundindex |
bvnumber | BV046871338 |
classification_rvk | QH 400 QH 451 SI 853 |
collection | ZDB-2-SBE ZDB-2-BAE |
ctrlnum | (ZDB-2-SBE)978-3-642-49270-9 (OCoLC)863989971 (DE-599)BVBBV046871338 |
dewey-full | 658.40301 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 658 - General management |
dewey-raw | 658.40301 |
dewey-search | 658.40301 |
dewey-sort | 3658.40301 |
dewey-tens | 650 - Management and auxiliary services |
discipline | Mathematik Wirtschaftswissenschaften |
discipline_str_mv | Mathematik Wirtschaftswissenschaften |
doi_str_mv | 10.1007/978-3-642-49270-9 |
edition | 1st ed. 1986 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03712nmm a2200649zcb4500</leader><controlfield tag="001">BV046871338</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200828s1986 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642492709</subfield><subfield code="9">978-3-642-49270-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-49270-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SBE)978-3-642-49270-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863989971</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046871338</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">658.40301</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 400</subfield><subfield code="0">(DE-625)141571:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 451</subfield><subfield code="0">(DE-625)141594:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 853</subfield><subfield code="0">(DE-625)143200:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kruse, H.-J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Degeneracy Graphs and the Neighbourhood Problem</subfield><subfield code="c">by H.-J. Kruse</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 1986</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1986</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 132 p. 15 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lecture Notes in Economics and Mathematical Systems</subfield><subfield code="v">260</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A few years ago nobody would have anticipated that in connection with degeneracy in Linear Programming quite a new field. could originate. In 1976 a very simple question has been posed: in the case an extreme pOint (EP) of a polytope is degenerate and the task is to find all neighbouring EP's of the degenerate EP, is it necessary to determine all basic solutions of the corresponding equalities system associated with the degenerate EP -in order to be certain to determine all neighbours of this EP? This question implied another one: Does there exists a subset of the mentioned set of basic solutions such that it suffices to find such a subset in order to determine all neighbours? The first step to solve these questions (which are motivated in the first Chapter of this book) was to define a graph (called degeneracy graph) the nodes of which correspond to the basic solutions. It turned out that such a graph has some special properties and in order to solve the above questions firstly these properties had to be investigated. Also the structure of degeneracy graphs playes hereby an important role. Because the theory of degeneracy graphs was quite new, it was necessary to elaborate first a completely new terminology and to define new notions. Dr</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations Research/Decision Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decision making</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Extremwert</subfield><subfield code="0">(DE-588)4137272-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nachbarschaftsproblem</subfield><subfield code="0">(DE-588)4120782-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare Optimierung</subfield><subfield code="0">(DE-588)4035816-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Graphentheorie</subfield><subfield code="0">(DE-588)4113782-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Entartungsgraph</subfield><subfield code="0">(DE-588)4121198-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Entartungsgraph</subfield><subfield code="0">(DE-588)4121198-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Nachbarschaftsproblem</subfield><subfield code="0">(DE-588)4120782-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Extremwert</subfield><subfield code="0">(DE-588)4137272-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Lineare Optimierung</subfield><subfield code="0">(DE-588)4035816-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Graphentheorie</subfield><subfield code="0">(DE-588)4113782-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783540160496</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783642492716</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-49270-9</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SBE</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SBE_Archiv</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032281469</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-49270-9</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SBE</subfield><subfield code="q">ZDB-2-SBE_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV046871338 |
illustrated | Not Illustrated |
index_date | 2024-07-03T15:15:35Z |
indexdate | 2024-07-10T08:56:07Z |
institution | BVB |
isbn | 9783642492709 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032281469 |
oclc_num | 863989971 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | 1 Online-Ressource (VIII, 132 p. 15 illus) |
psigel | ZDB-2-SBE ZDB-2-BAE ZDB-2-SBE_Archiv ZDB-2-SBE ZDB-2-SBE_Archiv |
publishDate | 1986 |
publishDateSearch | 1986 |
publishDateSort | 1986 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Lecture Notes in Economics and Mathematical Systems |
spelling | Kruse, H.-J. Verfasser aut Degeneracy Graphs and the Neighbourhood Problem by H.-J. Kruse 1st ed. 1986 Berlin, Heidelberg Springer Berlin Heidelberg 1986 1 Online-Ressource (VIII, 132 p. 15 illus) txt rdacontent c rdamedia cr rdacarrier Lecture Notes in Economics and Mathematical Systems 260 A few years ago nobody would have anticipated that in connection with degeneracy in Linear Programming quite a new field. could originate. In 1976 a very simple question has been posed: in the case an extreme pOint (EP) of a polytope is degenerate and the task is to find all neighbouring EP's of the degenerate EP, is it necessary to determine all basic solutions of the corresponding equalities system associated with the degenerate EP -in order to be certain to determine all neighbours of this EP? This question implied another one: Does there exists a subset of the mentioned set of basic solutions such that it suffices to find such a subset in order to determine all neighbours? The first step to solve these questions (which are motivated in the first Chapter of this book) was to define a graph (called degeneracy graph) the nodes of which correspond to the basic solutions. It turned out that such a graph has some special properties and in order to solve the above questions firstly these properties had to be investigated. Also the structure of degeneracy graphs playes hereby an important role. Because the theory of degeneracy graphs was quite new, it was necessary to elaborate first a completely new terminology and to define new notions. Dr Operations Research/Decision Theory Operations research Decision making Extremwert (DE-588)4137272-4 gnd rswk-swf Nachbarschaftsproblem (DE-588)4120782-8 gnd rswk-swf Lineare Optimierung (DE-588)4035816-1 gnd rswk-swf Graphentheorie (DE-588)4113782-6 gnd rswk-swf Entartungsgraph (DE-588)4121198-4 gnd rswk-swf (DE-588)4113937-9 Hochschulschrift gnd-content Entartungsgraph (DE-588)4121198-4 s Nachbarschaftsproblem (DE-588)4120782-8 s DE-604 Extremwert (DE-588)4137272-4 s Lineare Optimierung (DE-588)4035816-1 s Graphentheorie (DE-588)4113782-6 s Erscheint auch als Druck-Ausgabe 9783540160496 Erscheint auch als Druck-Ausgabe 9783642492716 https://doi.org/10.1007/978-3-642-49270-9 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Kruse, H.-J Degeneracy Graphs and the Neighbourhood Problem Operations Research/Decision Theory Operations research Decision making Extremwert (DE-588)4137272-4 gnd Nachbarschaftsproblem (DE-588)4120782-8 gnd Lineare Optimierung (DE-588)4035816-1 gnd Graphentheorie (DE-588)4113782-6 gnd Entartungsgraph (DE-588)4121198-4 gnd |
subject_GND | (DE-588)4137272-4 (DE-588)4120782-8 (DE-588)4035816-1 (DE-588)4113782-6 (DE-588)4121198-4 (DE-588)4113937-9 |
title | Degeneracy Graphs and the Neighbourhood Problem |
title_auth | Degeneracy Graphs and the Neighbourhood Problem |
title_exact_search | Degeneracy Graphs and the Neighbourhood Problem |
title_exact_search_txtP | Degeneracy Graphs and the Neighbourhood Problem |
title_full | Degeneracy Graphs and the Neighbourhood Problem by H.-J. Kruse |
title_fullStr | Degeneracy Graphs and the Neighbourhood Problem by H.-J. Kruse |
title_full_unstemmed | Degeneracy Graphs and the Neighbourhood Problem by H.-J. Kruse |
title_short | Degeneracy Graphs and the Neighbourhood Problem |
title_sort | degeneracy graphs and the neighbourhood problem |
topic | Operations Research/Decision Theory Operations research Decision making Extremwert (DE-588)4137272-4 gnd Nachbarschaftsproblem (DE-588)4120782-8 gnd Lineare Optimierung (DE-588)4035816-1 gnd Graphentheorie (DE-588)4113782-6 gnd Entartungsgraph (DE-588)4121198-4 gnd |
topic_facet | Operations Research/Decision Theory Operations research Decision making Extremwert Nachbarschaftsproblem Lineare Optimierung Graphentheorie Entartungsgraph Hochschulschrift |
url | https://doi.org/10.1007/978-3-642-49270-9 |
work_keys_str_mv | AT krusehj degeneracygraphsandtheneighbourhoodproblem |