Electronic nose: algorithmic challenges:
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Singapore
Springer
[2018]
|
Schlagworte: | |
Online-Zugang: | Inhaltstext http://www.springer.com/ Inhaltsverzeichnis Inhaltsverzeichnis |
Beschreibung: | xv, 339 Seiten Illustrationen |
ISBN: | 9789811321665 9811321663 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV046863786 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 200824s2018 si a||| |||| 00||| eng d | ||
015 | |a 20,A27 |2 dnb | ||
016 | 7 | |a 1166979512 |2 DE-101 | |
020 | |a 9789811321665 |c Festeinband : EUR 128.39 (DE) (freier Preis), EUR 131.99 (AT) (freier Preis), CHF 132.00 (freier Preis) |9 978-981-13-2166-5 | ||
020 | |a 9811321663 |9 981-13-2166-3 | ||
024 | 3 | |a 9789811321665 | |
035 | |a (DE-599)DNB1166979512 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a si |c XB-SG | ||
049 | |a DE-83 | ||
082 | 0 | |a 006.24835379 |2 23/ger | |
082 | 0 | |a 628.0287 |2 23/ger | |
082 | 0 | |a 681.754 |2 23/ger | |
084 | |a ZQ 3890 |0 (DE-625)158086: |2 rvk | ||
084 | |a ZQ 3950 |0 (DE-625)158090: |2 rvk | ||
084 | |a 621.3 |2 sdnb | ||
084 | |a 004 |2 sdnb | ||
084 | |a 670 |2 sdnb | ||
100 | 1 | |a Zhang, Lei |e Verfasser |4 aut | |
245 | 1 | 0 | |a Electronic nose: algorithmic challenges |c Lei Zhang, Fengchun Tian, David Zhang |
264 | 1 | |a Singapore |b Springer |c [2018] | |
300 | |a xv, 339 Seiten |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Elektronische Nase |0 (DE-588)1067516492 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Duftstoff |0 (DE-588)4113361-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geruchsemission |0 (DE-588)4156902-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Messung |0 (DE-588)4038852-9 |2 gnd |9 rswk-swf |
653 | |a Artificial Intelligence | ||
653 | |a Bionic Perception | ||
653 | |a Drift Compensation | ||
653 | |a Electronic Nose | ||
653 | |a Gas Sensing | ||
653 | |a Intelligent Nose | ||
653 | |a Machine Learning | ||
653 | |a Machine Olfaction | ||
653 | |a Odor Recognition | ||
653 | |a Pattern Recognition | ||
689 | 0 | 0 | |a Elektronische Nase |0 (DE-588)1067516492 |D s |
689 | 0 | 1 | |a Geruchsemission |0 (DE-588)4156902-7 |D s |
689 | 0 | 2 | |a Duftstoff |0 (DE-588)4113361-4 |D s |
689 | 0 | 3 | |a Messung |0 (DE-588)4038852-9 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Tian, Fengchun |e Verfasser |4 aut | |
700 | 1 | |a Zhang, David |d 1949- |e Verfasser |0 (DE-588)12099190X |4 aut | |
710 | 2 | |a Springer Malaysia Representative Office |0 (DE-588)1065365012 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |t Electronic Nose: Algorithmic Challenges |b 1st edition 2018 |d Singapore : Springer Singapore, 2018 |h Online-Ressource |
856 | 4 | 2 | |m X:MVB |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=ad266c9db5714817a826f8f5ba59af0e&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m X:MVB |u http://www.springer.com/ |
856 | 4 | 2 | |m B:DE-101 |q application/pdf |u https://d-nb.info/1166979512/04 |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032272392&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-032272392 |
Datensatz im Suchindex
_version_ | 1804181706574397440 |
---|---|
adam_text | CONTENTS
PART
I
OVERVIEW
1
INTRODUCTION
.................................................................................................
3
1.1
BACKGROUND
OF
ELECTRONIC
NOSE
......................................................
3
1.2
DEVELOPMENT
IN
APPLICATION
LEVEL
.................................................
4
1.3
DEVELOPMENT
IN
SYSTEM
LEVEL
........................................................
4
1.4
RELATED
TECHNOLOGIES
.......................................................................
5
1.5
OUTLINE
OF
THE
BOOK
.........................................................................
6
REFERENCES
.....................................................................................................
7
2
E-NOSE
ALGORITHMS
AND
CHALLENGES
.........................................................
11
2.1
FEATURE
EXTRACTION
AND
DE-NOISING
ALGORITHMS
............................
11
2.2
PATTERN
RECOGNITION
ALGORITHMS
.......................................................
13
2.3
DRIFT
COMPENSATION
ALGORITHMS
.......................................................
13
2.4
CURRENT
E-NOSE
CHALLENGES
.............................................................
15
2.4.1
DISCRETENESS
..........................................................................
15
2.4.2
DRIFT
.....................................................................................
16
2.4.3
DISTURBANCE
.........................................................................
16
2.5
SUMMARY
............................................................................................
17
REFERENCES
.....................................................................................................
17
PART
II
E-NOSE
ODOR
RECOGNITION
AND
PREDICTION:
CHALLENGE
I
3
HEURISTIC
AND
BIO-INSPIRED
NEURAL
NETWORK
MODEL
............................
23
3.1
INTRODUCTION
.......................................................................................
23
3.2
PARTICLE
SWARM
OPTIMIZATION
MODELS
.............................................
25
3.2.1
STANDARD
PARTICLE
SWARM
OPTIMIZATION
(SPSO)
..............
25
3.2.2
ADAPTIVE
PARTICLE
SWARM
OPTIMIZATION
(APSO)
............
26
3.2.3
ATTRACTIVE
AND
REPULSIVE
PARTICLE
SWARM
OPTIMIZATION
(ARPSO)
......................................................
26
VIII
CONTENTS
3.2.4
DIFFUSION
AND
REPULSION
PARTICLE
SWARM
OPTIMIZATION
(DRPSO)
..............................................................................
27
3.2.5
BACTERIAL
CHEMOTAXIS
PARTICLE
SWARM
OPTIMIZATION
(PSOBC)
..............................................................................
28
3.3
HYBRID
EVOLUTIONARY
ALGORITHM
........................................................
28
3.3.1
PSO
WITH
COSINE
MECHANISM
...........................................
28
3.3.2
ADAPTIVE
GENETIC
STRATEGY
(AGS)
....................................
29
3.4
CONCENTRATION
ESTIMATION
ALGORITHM
...............................................
30
3.4.1
MULTILAYER
PERCEPTRON
.........................................................
30
3.4.2
NETWORK
OPTIMIZATION
.......................................................
31
3.5
EXPERIMENTS
........................................................................................
33
3.5.1
EXPERIMENTAL
SETUP
...........................................................
34
3.5.2
DATASETS
.................................................................................
34
3.5.3
CONCENTRATION
ESTIMATION
..................................................
37
3.6
RESULTS
AND
DISCUSSION
.....................................................................
39
3.6.1
EXPERIMENTAL
RESULTS
.........................................................
39
3.6.2
COMPUTATIONAL
EFFICIENCY
..................................................
43
3.6.3
DISCUSSION
............................................................................
43
3.7
SUMMARY
.............................................................................................
44
REFERENCES
......................................................................................................
45
4
CHAOS-BASED
NEURAL
NETWORK
OPTIMIZATION
APPROACH
......................
47
4.1
INTRODUCTION
........................................................................................
47
4.2
MATERIALS
AND
METHODS
.....................................................................
48
4.2.1
ELECTRONIC
NOSE
..................................................................
48
4.2.2
DATA
ACQUISITION
................................................................
49
4.2.3
BACK-PROPAGATION
NEURAL
NETWORK
....................................
51
4.2.4
MUTATIVE
SCALE
CHAOTIC
SEQUENCE
OPTIMIZATION
............
53
4.2.5
STANDARD
PARTICLE
SWARM
OPTIMIZATION
(SPSO)
...............
54
4.2.6
PARAMETER
SETTINGS
..............................................................
55
4.2.7
ON-LINE
USAGE
.....................................................................
56
4.3
RESULTS
AND
DISCUSSION
.....................................................................
56
4.4
SUMMARY
.............................................................................................
58
REFERENCES
......................................................................................................
59
5
MULTILAYER
PERCEPTRON-BASED
CONCENTRATION
ESTIMATION
...................
61
5.1
INTRODUCTION
........................................................................................
61
5.2
E-NOSE
SYSTEMS
AND
DATA
ACQUISITION
...........................................
62
5.2.1
LOW-COST
ELECTRONIC
NOSE
SYSTEM
.....................................
62
5.2.2
EXPERIMENTAL
SETUP
...........................................................
63
5.2.3
DESCRIPTION
OF
DATASET
.......................................................
65
5.3
MLP-BASED
QUANTIZATION
MODELS
....................................................
65
5.3.1
SINGLE
MULTI-INPUT
MULTI-OUTPUT
(SMIMO)
MODEL
....
65
CONTENTS
IX
5.3.2
MULTIPLE
MULTI-INPUT
SINGLE-OUTPUT
(MMISO)
MODEL
....
69
5.3.3
MODEL
OPTIMIZATION
...........................................................
71
5.4
RESULTS
AND
DISCUSSION
....................................................................
73
5.5
SUMMARY
............................................................................................
76
REFERENCES
......................................................................................................
76
6
DISCRIMINATIVE
SUPPORT
VECTOR
MACHINE-BASED
ODOR
CLASSIFICATION
.................................................................................................
79
6.1
INTRODUCTION
.......................................................................................
79
6.2
CLASSIFICATION
METHODOLOGIES
...........................................................
81
6.2.1
EUCLIDEAN
DISTANCE
TO
CENTROIDS
(EDC)
..........................
81
6.2.2
SIMPLIFIED
FUZZY
ARTMAP
NETWORK
(SEAM)
..............
81
6.2.3
MULTILAYER
PERCEPTRON
NEURAL
NETWORK
(MLP)
..............
82
6.2.4
FISHER
LINEAR
DISCRIMINANT
ANALYSIS
(FLDA)
.................
82
6.2.5
SUPPORT
VECTOR
MACHINE
(SVM)
......................................
83
6.3
EXPERIMENTS
.......................................................................................
84
6.3.1
EXPERIMENTAL
SETUP
...........................................................
84
6.3.2
DATASET
................................................................................
85
6.3.3
MULTI-CLASS
DISCRIMINATION
...............................................
85
6.3.4
DATA
ANALYSIS
.......................................................................
87
6.4
RESULTS
AND
DISCUSSION
....................................................................
87
6.4.1
EXPERIMENTAL
RESULTS
.........................................................
87
6.4.2
DISCUSSION
............................................................................
91
6.5
SUMMARY
............................................................................................
92
REFERENCES
.....................................................................................................
92
7
LOCAL
KERNEL
DISCRIMINANT
ANALYSIS-BASED
ODOR
RECOGNITION
..........
95
7.1
INTRODUCTION
.......................................................................................
95
7.2
RELATED
WORK
.....................................................................................
97
7.2.1
PCA
.....................................................................................
97
7.2.2
KPCA
...................................................................................
97
7.2.3
LDA
.....................................................................................
98
7.3
THE
PROPOSED
APPROACH
..................................................................
99
7.3.1
NDA
FRAMEWORK
................................................................
99
7.3.2
THE
KPCA
PLUS
NDA
ALGORITHM
(KNDA)
...................
101
7.3.3
MULTI-CLASS
RECOGNITION
....................................................
102
7.4
EXPERIMENTS
.......................................................................................
105
7.4.1
E-NOSE
SYSTEM
....................................................................
105
7.4.2
DATASET
................................................................................
106
7.5
RESULTS
AND
DISCUSSION
....................................................................
107
7.5.1
CONTRIBUTION
RATE
ANALYSIS
...............................................
107
7.5.2
COMPARISONS
.......................................................................
107
7.5.3
COMPUTATIONAL
EFFICIENCY
..................................................
ILL
X
CONTENTS
7.6
SUMMARY
.............................................................................................
112
REFERENCES
......................................................................................................
112
8
ENSEMBLE
OF
CLASSIFIERS
FOR
ROBUST
RECOGNITION
..................................
115
8.1
INTRODUCTION
........................................................................................
115
8.2
DATA
ACQUISITION
.................................................................................
117
8.2.1
ELECTRONIC
NOSE
SYSTEM
....................................................
117
8.2.2
EXPERIMENTAL
SETUP
...........................................................
117
8.2.3
E-NOSE
DATA
.......................................................................
118
8.3
METHODS
...............................................................................................
119
8.3.1
KPCA-BASED
FEATURE
EXTRACTION
......................................
119
8.3.2
BASE
CLASSIFIERS
..................................................................
121
8.3.3
MULTI-CLASS
ISVMEN
.........................................................
122
8.4
RESULTS
AND
DISCUSSION
.....................................................................
126
8.5
SUMMARY
.............................................................................................
129
REFERENCES
......................................................................................................
130
PART
III
E-NOSE
DRIFT
COMPENSATION:
CHALLENGE
II
9
CHAOTIC
TIME
SERIES-BASED
SENSOR
DRIFT
PREDICTION
..........................
135
9.1
INTRODUCTION
........................................................................................
135
9.2
DATA
......................................................................................................
136
9.2.1
LONG-TERM
SENSOR
DATA
....................................................
136
9.2.2
DISCRETE
FOURIER
TRANSFORM
(DFT)-BASED
FEATURE
EXTRACTION
............................................................................
137
9.3
CHAOTIC
TIME
SERIES
PREDICTION
.......................................................
139
9.3.1
PHASE
SPACE
RECONSTRUCTION
.............................................
139
9.3.2
PREDICTION
MODEL
................................................................
140
9.4
RESULTS
.................................................................................................
142
9.4.1
CHAOTIC
CHARACTERISTIC
ANALYSIS
........................................
142
9.4.2
DRIFT
PREDICTION
..................................................................
143
9.5
SUMMARY
............................................................................................
145
REFERENCES
......................................................................................................
145
10
DOMAIN
ADAPTATION
GUIDED
DRIFT
COMPENSATION
...............................
147
10.1
INTRODUCTION
........................................................................................
147
10.2
RELATED
WORK
.....................................................................................
149
10.2.1
DRIFT
COMPENSATION
...........................................................
149
10.2.2
EXTREME
LEARNING
MACHINE
...............................................
150
10.3
DOMAIN
ADAPTATION
EXTREME
LEARNING
MACHINE
..........................
151
10.3.1
SOURCE
DOMAIN
ADAPTATION
ELM
(DAELM-S)
..............
151
10.3.2
TARGET
DOMAIN
ADAPTATION
ELM
(DAELM-T)
................
155
CONTENTS
XI
10.4
EXPERIMENTS
.......................................................................................
159
10.4.1
DESCRIPTION
OF
DATA
...........................................................
159
10.4.2
EXPERIMENTAL
SETUP
...........................................................
163
10.5
RESULTS
AND
DISCUSSION
....................................................................
163
10.6
SUMMARY
............................................................................................
169
REFERENCES
.....................................................................................................
169
11
DOMAIN
REGULARIZED
SUBSPACE
PROJECTION
METHOD
............................
173
11.1
INTRODUCTION
.......................................................................................
173
11.2
RELATED
WORK
.....................................................................................
174
11.2.1
EXISTING
DRIFT
COMPENSATION
APPROACHES
........................
174
11.2.2
EXISTING
SUBSPACE
PROJECTION
ALGORITHMS
........................
176
11.3
DOMAIN
REGULARIZED
COMPONENT
ANALYSIS
(DRCA)
...................
176
11.3.1
MATHEMATICAL
NOTATIONS
....................................................
176
11.3.2
PROBLEM
FORMULATION
........................................................
177
11.3.3
MODEL
OPTIMIZATION
...........................................................
179
11.3.4
REMARKS
ON
DRCA
...........................................................
181
11.4
EXPERIMENTS
.......................................................................................
181
11.4.1
EXPERIMENT
ON
BENCHMARK
SENSOR
DRIFT
DATA
................
181
11.4.2
EXPERIMENT
ON
E-NOSE
DATA
WITH
DRIFT
AND
SHIFT
...........
185
11.4.3
PARAMETER
SENSITIVITY
ANALYSIS
........................................
188
11.4.4
DISCUSSION
...........................................................................
188
11.5
SUMMARY
............................................................................................
190
REFERENCES
.....................................................................................................
190
12
CROSS-DOMAIN
SUBSPACE
LEARNING
APPROACH
......................................
193
12.1
INTRODUCTION
.......................................................................................
193
12.2
RELATED
WORK
.....................................................................................
195
12.2.1
REVIEW
OF
ELM
..................................................................
195
12.2.2
SUBSPACE
LEARNING
.............................................................
196
12.3
THE
PROPOSED
CDELM
METHOD
......................................................
196
12.3.1
NOTATIONS
..............................................................................
196
12.3.2
MODEL
FORMULATION
.............................................................
197
12.3.3
MODEL
OPTIMIZATION
...........................................................
199
12.4
EXPERIMENTS
.......................................................................................
200
12.4.1
DATA
DESCRIPTION
................................................................
200
12.4.2
EXPERIMENTAL
SETTINGS
........................................................
201
12.4.3
SINGLE-DOMAIN
SUBSPACE
PROJECTION
METHODS
................
201
12.4.4
CLASSIFICATION
RESULTS
.........................................................
202
12.4.5
PARAMETER
SENSITIVITY
........................................................
204
12.5
SUMMARY
............................................................................................
206
REFERENCES
.....................................................................................................
207
XII
CONTENTS
13
DOMAIN
CORRECTION-BASED
ADAPTIVE
EXTREME
LEARNING
MACHINE
.........................................................................................................
209
13.1
INTRODUCTION
........................................................................................
209
13.2
RELATED
WORK
.....................................................................................
210
13.2.1
TRANSFER
LEARNING
................................................................
210
13.2.2
EXTREME
LEARNING
MACHINE
...............................................
211
13.3
THE
PROPOSED
METHOD
.......................................................................
213
13.3.1
NOTATIONS
..............................................................................
213
13.3.2
DOMAIN
CORRECTION
AND
ADAPTIVE
EXTREME
LEARNING
MACHINE
..............................................................................
213
13.4
EXPERIMENTS
........................................................................................
217
13.4.1
EXPERIMENT
ON
BACKGROUND
INTERFERENCE
DATA
..............
218
13.4.2
EXPERIMENT
ON
SENSOR
DRIFT
DATA
......................................
220
13.5
SUMMARY
.............................................................................................
221
REFERENCES
......................................................................................................
223
14
MULTI-FEATURE
SEMI-SUPERVISED
LEARNING
APPROACH
..............................
225
14.1
INTRODUCTION
........................................................................................
226
14.1.1
PROBLEM
STATEMENT
..............................................................
226
14.1.2
MOTIVATION
............................................................................
226
14.2
RELATED
WORK
.....................................................................................
227
14.3
MULTI-FEATURE
KERNEL
SEMI-SUPERVISED
JOINT
LEARNING
MODEL
.................................................................................................
228
14.3.1
NOTATIONS
..............................................................................
228
14.3.2
MODEL
...................................................................................
229
14.3.3
OPTIMIZATION
ALGORITHM
....................................................
231
14.3.4
CLASSIFICATION
.......................................................................
234
14.3.5
CONVERGENCE
.......................................................................
235
14.3.6
COMPUTATIONAL
COMPLEXITY
................................................
236
14.3.7
REMARKS
ON
OPTIMALITY
CONDITION
....................................
237
14.4
EXPERIMENTS
ON
DRIFTED
E-NOSE
DATA
.............................................
238
14.4.1
DESCRIPTION
OF
DATA
...........................................................
238
14.4.2
EXPERIMENTAL
SETUP
...........................................................
238
14.4.3
PARAMETER
SETTING
................................................................
239
14.4.4
COMPARED
METHODS
...........................................................
239
14.4.5
RESULTS
AND
ANALYSIS
.........................................................
239
14.5
EXPERIMENTS
ON
MODULATED
E-NOSE
DATA
......................................
240
14.5.1
DESCRIPTION
OF
DATA
...........................................................
240
14.5.2
EXPERIMENTAL
SETUP
...........................................................
243
14.5.3
PARAMETER
SETTING
................................................................
243
14.5.4
RESULTS
AND
ANALYSIS
.........................................................
243
14.6
SUMMARY
.............................................................................................
244
REFERENCES
......................................................................................................
244
CONTENTS
XIII
PART
IV
E-NOSE
DISTURBANCE
ELIMINATION:
CHALLENGE
III
15
PATTERN
RECOGNITION-BASED
INTERFERENCE
REDUCTION
.............................
249
15.1
INTRODUCTION
.......................................................................................
249
15.2
MATERIALS
AND
METHODS
....................................................................
251
15.2.1
EXPERIMENTAL
PLATFORM
......................................................
251
15.2.2
SENSOR
SIGNAL
PREPROCESSING
.............................................
251
15.2.3
E-NOSE
DATA
PREPARATION
....................................................
251
15.2.4
FEATURE
SELECTION
OF
ABNORMAL
ODOR
...............................
253
15.2.5
GENETIC
CROSSOVER
OPERATOR
FOR
SOLUTION
OF
UNEVEN
FEATURES
................................................................................
254
15.2.6
DESCRIPTION
OF
LEARNER-
1
UNDER
MULTI-CLASS
CONDITION
..............................................................................
255
15.2.7
DESCRIPTION
OF
LEAMER-2
UNDER
BINARY
CLASSIFICATION
CONDITION
..............................................................................
257
15.2.8
ADAPTIVE
COUNTERACTION
MODEL
........................................
257
15.3
RESULTS
AND
DISCUSSION
...................................................................
259
15.3.1
RECOGNITION
ACCURACY
OF
LEARNER-
1
AND
LEAMER-2
....
259
15.3.2
ABNORMAL
ODOR
COUNTERACTION:
CASE
STUDY
...................
260
15.3.3
DISCUSSION
...........................................................................
262
15.4
SUMMARY
............................................................................................
262
REFERENCES
.....................................................................................................
263
16
PATTERN
MISMATCH
GUIDED
INTERFERENCE
ELIMINATION
...........................
265
16.1
INTRODUCTION
.......................................................................................
265
16.2
DATA
ACQUISITION
................................................................................
267
16.3
PROPOSED
PMIE
METHOD
..................................................................
267
16.3.1
MAIN
IDEA
...........................................................................
267
16.3.2
PATTERN
MISMATCH-BASED
INTERFERENCE
ELIMINATION
(PMIE)
................................................................................
268
16.4
RESULTS
AND
DISCUSSION
....................................................................
272
16.4.1
DATA
PREPROCESSING
.............................................................
272
16.4.2
PMIE
TRAINING
ON
DATASET
1
.............................................
272
16.4.3
THRESHOLD
ANALYSIS
BASED
ON
DATASET
2
...........................
273
16.4.4
INTERFERENCE
DISCRIMINATION
ON
DATASET
3
.........................
273
16.4.5
PMIE-BASED
INTERFERENCE
ELIMINATION
RESULT
.................
276
16.5
SUMMARY
............................................................................................
277
REFERENCES
.....................................................................................................
277
17
SELF-EXPRESSION-BASED
ABNORMAL
ODOR
DETECTION
...............................
279
17.1
INTRODUCTION
.......................................................................................
279
17.1.1
BACKGROUND
.........................................................................
279
17.1.2
PROBLEM
STATEMENT
.............................................................
280
17.1.3
MOTIVATION
...........................................................................
280
XIV
CONTENTS
17.2
RELATED
WORK
......................................................................................
282
17.3
SELF-EXPRESSION
MODEL
(SEM)
.........................................................
284
17.3.1
MODEL
FORMULATION
..............................................................
284
17.3.2
ALGORITHM
............................................................................
286
17.4
EXTREME
LEARNING
MACHINE-BASED
SELF-EXPRESSION
MODEL
(SE
2
LM)
.............................................................................................
287
17.4.1
MODEL
FORMULATION
..............................................................
287
17.4.2
ALGORITHM
............................................................................
289
17.5
EXPERIMENTS
........................................................................................
290
17.5.1
ELECTRONIC
NOSE
AND
DATA
ACQUISITION
.............................
290
17.5.2
ABNORMAL
ODOR
DETECTION
BASED
ON
DATASET
1
..............
291
17.5.3
VALIDATION
OF
REAL-TIME
SEQUENCE
ON
DATASET
2
.............
295
17.5.4
VALIDATION
OF
REAL-TIME
SEQUENCE
ON
DATASET
3
.............
295
17.6
DISCUSSION
..........................................................................................
296
17.7
SUMMARY
.............................................................................................
297
REFERENCES
......................................................................................................
297
PART
V
E-NOSE
DISCRETENESS
CORRECTION:
CHALLENGE
IV
18
AFFINE
CALIBRATION
TRANSFER
MODEL
.........................................................
301
18.1
INTRODUCTION
........................................................................................
301
18.2
METHOD
...............................................................................................
303
18.2.1
CALIBRATION
STEP
..................................................................
303
18.2.2
PREDICTION
STEP
.....................................................................
307
18.3
EXPERIMENTS
........................................................................................
309
18.3.1
ELECTRONIC
NOSE
MODULE
....................................................
309
18.3.2
GAS
DATASETS
.......................................................................
309
18.4
RESULTS
AND
DISCUSSION
.....................................................................
310
18.4.1
SENSOR
RESPONSE
CALIBRATION
.............................................
310
18.4.2
CONCENTRATION
PREDICTION
....................................................
314
18.5
SUMMARY
.............................................................................................
320
REFERENCES
......................................................................................................
320
19
INSTRUMENTAL
BATCH
CORRECTION
.................................................................
323
19.1
INTRODUCTION
........................................................................................
323
19.2
MATERIALS
AND
METHOD
.......................................................................
325
19.2.1
SENSORS
*
DISCRETENESS
.........................................................
325
19.2.2
REVIEW
OF
THE
GAT-RWLS
METHOD
...............................
326
19.2.3
INSTRUMENTAL
BATCH
CORRECTION
SCHEME
..........................
327
19.3
RESULTS
AND
DISCUSSION
.....................................................................
328
19.4
SUMMARY
.............................................................................................
332
REFERENCES
......................................................................................................
333
CONTENTS
XV
20
BOOK
REVIEW
AND
FUTURE
WORK
..............................................................
335
20.1
INTRODUCTION
.......................................................................................
336
20.2
FUTURE
WORK
.......................................................................................
339
|
adam_txt |
CONTENTS
PART
I
OVERVIEW
1
INTRODUCTION
.
3
1.1
BACKGROUND
OF
ELECTRONIC
NOSE
.
3
1.2
DEVELOPMENT
IN
APPLICATION
LEVEL
.
4
1.3
DEVELOPMENT
IN
SYSTEM
LEVEL
.
4
1.4
RELATED
TECHNOLOGIES
.
5
1.5
OUTLINE
OF
THE
BOOK
.
6
REFERENCES
.
7
2
E-NOSE
ALGORITHMS
AND
CHALLENGES
.
11
2.1
FEATURE
EXTRACTION
AND
DE-NOISING
ALGORITHMS
.
11
2.2
PATTERN
RECOGNITION
ALGORITHMS
.
13
2.3
DRIFT
COMPENSATION
ALGORITHMS
.
13
2.4
CURRENT
E-NOSE
CHALLENGES
.
15
2.4.1
DISCRETENESS
.
15
2.4.2
DRIFT
.
16
2.4.3
DISTURBANCE
.
16
2.5
SUMMARY
.
17
REFERENCES
.
17
PART
II
E-NOSE
ODOR
RECOGNITION
AND
PREDICTION:
CHALLENGE
I
3
HEURISTIC
AND
BIO-INSPIRED
NEURAL
NETWORK
MODEL
.
23
3.1
INTRODUCTION
.
23
3.2
PARTICLE
SWARM
OPTIMIZATION
MODELS
.
25
3.2.1
STANDARD
PARTICLE
SWARM
OPTIMIZATION
(SPSO)
.
25
3.2.2
ADAPTIVE
PARTICLE
SWARM
OPTIMIZATION
(APSO)
.
26
3.2.3
ATTRACTIVE
AND
REPULSIVE
PARTICLE
SWARM
OPTIMIZATION
(ARPSO)
.
26
VIII
CONTENTS
3.2.4
DIFFUSION
AND
REPULSION
PARTICLE
SWARM
OPTIMIZATION
(DRPSO)
.
27
3.2.5
BACTERIAL
CHEMOTAXIS
PARTICLE
SWARM
OPTIMIZATION
(PSOBC)
.
28
3.3
HYBRID
EVOLUTIONARY
ALGORITHM
.
28
3.3.1
PSO
WITH
COSINE
MECHANISM
.
28
3.3.2
ADAPTIVE
GENETIC
STRATEGY
(AGS)
.
29
3.4
CONCENTRATION
ESTIMATION
ALGORITHM
.
30
3.4.1
MULTILAYER
PERCEPTRON
.
30
3.4.2
NETWORK
OPTIMIZATION
.
31
3.5
EXPERIMENTS
.
33
3.5.1
EXPERIMENTAL
SETUP
.
34
3.5.2
DATASETS
.
34
3.5.3
CONCENTRATION
ESTIMATION
.
37
3.6
RESULTS
AND
DISCUSSION
.
39
3.6.1
EXPERIMENTAL
RESULTS
.
39
3.6.2
COMPUTATIONAL
EFFICIENCY
.
43
3.6.3
DISCUSSION
.
43
3.7
SUMMARY
.
44
REFERENCES
.
45
4
CHAOS-BASED
NEURAL
NETWORK
OPTIMIZATION
APPROACH
.
47
4.1
INTRODUCTION
.
47
4.2
MATERIALS
AND
METHODS
.
48
4.2.1
ELECTRONIC
NOSE
.
48
4.2.2
DATA
ACQUISITION
.
49
4.2.3
BACK-PROPAGATION
NEURAL
NETWORK
.
51
4.2.4
MUTATIVE
SCALE
CHAOTIC
SEQUENCE
OPTIMIZATION
.
53
4.2.5
STANDARD
PARTICLE
SWARM
OPTIMIZATION
(SPSO)
.
54
4.2.6
PARAMETER
SETTINGS
.
55
4.2.7
ON-LINE
USAGE
.
56
4.3
RESULTS
AND
DISCUSSION
.
56
4.4
SUMMARY
.
58
REFERENCES
.
59
5
MULTILAYER
PERCEPTRON-BASED
CONCENTRATION
ESTIMATION
.
61
5.1
INTRODUCTION
.
61
5.2
E-NOSE
SYSTEMS
AND
DATA
ACQUISITION
.
62
5.2.1
LOW-COST
ELECTRONIC
NOSE
SYSTEM
.
62
5.2.2
EXPERIMENTAL
SETUP
.
63
5.2.3
DESCRIPTION
OF
DATASET
.
65
5.3
MLP-BASED
QUANTIZATION
MODELS
.
65
5.3.1
SINGLE
MULTI-INPUT
MULTI-OUTPUT
(SMIMO)
MODEL
.
65
CONTENTS
IX
5.3.2
MULTIPLE
MULTI-INPUT
SINGLE-OUTPUT
(MMISO)
MODEL
.
69
5.3.3
MODEL
OPTIMIZATION
.
71
5.4
RESULTS
AND
DISCUSSION
.
73
5.5
SUMMARY
.
76
REFERENCES
.
76
6
DISCRIMINATIVE
SUPPORT
VECTOR
MACHINE-BASED
ODOR
CLASSIFICATION
.
79
6.1
INTRODUCTION
.
79
6.2
CLASSIFICATION
METHODOLOGIES
.
81
6.2.1
EUCLIDEAN
DISTANCE
TO
CENTROIDS
(EDC)
.
81
6.2.2
SIMPLIFIED
FUZZY
ARTMAP
NETWORK
(SEAM)
.
81
6.2.3
MULTILAYER
PERCEPTRON
NEURAL
NETWORK
(MLP)
.
82
6.2.4
FISHER
LINEAR
DISCRIMINANT
ANALYSIS
(FLDA)
.
82
6.2.5
SUPPORT
VECTOR
MACHINE
(SVM)
.
83
6.3
EXPERIMENTS
.
84
6.3.1
EXPERIMENTAL
SETUP
.
84
6.3.2
DATASET
.
85
6.3.3
MULTI-CLASS
DISCRIMINATION
.
85
6.3.4
DATA
ANALYSIS
.
87
6.4
RESULTS
AND
DISCUSSION
.
87
6.4.1
EXPERIMENTAL
RESULTS
.
87
6.4.2
DISCUSSION
.
91
6.5
SUMMARY
.
92
REFERENCES
.
92
7
LOCAL
KERNEL
DISCRIMINANT
ANALYSIS-BASED
ODOR
RECOGNITION
.
95
7.1
INTRODUCTION
.
95
7.2
RELATED
WORK
.
97
7.2.1
PCA
.
97
7.2.2
KPCA
.
97
7.2.3
LDA
.
98
7.3
THE
PROPOSED
APPROACH
.
99
7.3.1
NDA
FRAMEWORK
.
99
7.3.2
THE
KPCA
PLUS
NDA
ALGORITHM
(KNDA)
.
101
7.3.3
MULTI-CLASS
RECOGNITION
.
102
7.4
EXPERIMENTS
.
105
7.4.1
E-NOSE
SYSTEM
.
105
7.4.2
DATASET
.
106
7.5
RESULTS
AND
DISCUSSION
.
107
7.5.1
CONTRIBUTION
RATE
ANALYSIS
.
107
7.5.2
COMPARISONS
.
107
7.5.3
COMPUTATIONAL
EFFICIENCY
.
ILL
X
CONTENTS
7.6
SUMMARY
.
112
REFERENCES
.
112
8
ENSEMBLE
OF
CLASSIFIERS
FOR
ROBUST
RECOGNITION
.
115
8.1
INTRODUCTION
.
115
8.2
DATA
ACQUISITION
.
117
8.2.1
ELECTRONIC
NOSE
SYSTEM
.
117
8.2.2
EXPERIMENTAL
SETUP
.
117
8.2.3
E-NOSE
DATA
.
118
8.3
METHODS
.
119
8.3.1
KPCA-BASED
FEATURE
EXTRACTION
.
119
8.3.2
BASE
CLASSIFIERS
.
121
8.3.3
MULTI-CLASS
ISVMEN
.
122
8.4
RESULTS
AND
DISCUSSION
.
126
8.5
SUMMARY
.
129
REFERENCES
.
130
PART
III
E-NOSE
DRIFT
COMPENSATION:
CHALLENGE
II
9
CHAOTIC
TIME
SERIES-BASED
SENSOR
DRIFT
PREDICTION
.
135
9.1
INTRODUCTION
.
135
9.2
DATA
.
136
9.2.1
LONG-TERM
SENSOR
DATA
.
136
9.2.2
DISCRETE
FOURIER
TRANSFORM
(DFT)-BASED
FEATURE
EXTRACTION
.
137
9.3
CHAOTIC
TIME
SERIES
PREDICTION
.
139
9.3.1
PHASE
SPACE
RECONSTRUCTION
.
139
9.3.2
PREDICTION
MODEL
.
140
9.4
RESULTS
.
142
9.4.1
CHAOTIC
CHARACTERISTIC
ANALYSIS
.
142
9.4.2
DRIFT
PREDICTION
.
143
9.5
SUMMARY
.
145
REFERENCES
.
145
10
DOMAIN
ADAPTATION
GUIDED
DRIFT
COMPENSATION
.
147
10.1
INTRODUCTION
.
147
10.2
RELATED
WORK
.
149
10.2.1
DRIFT
COMPENSATION
.
149
10.2.2
EXTREME
LEARNING
MACHINE
.
150
10.3
DOMAIN
ADAPTATION
EXTREME
LEARNING
MACHINE
.
151
10.3.1
SOURCE
DOMAIN
ADAPTATION
ELM
(DAELM-S)
.
151
10.3.2
TARGET
DOMAIN
ADAPTATION
ELM
(DAELM-T)
.
155
CONTENTS
XI
10.4
EXPERIMENTS
.
159
10.4.1
DESCRIPTION
OF
DATA
.
159
10.4.2
EXPERIMENTAL
SETUP
.
163
10.5
RESULTS
AND
DISCUSSION
.
163
10.6
SUMMARY
.
169
REFERENCES
.
169
11
DOMAIN
REGULARIZED
SUBSPACE
PROJECTION
METHOD
.
173
11.1
INTRODUCTION
.
173
11.2
RELATED
WORK
.
174
11.2.1
EXISTING
DRIFT
COMPENSATION
APPROACHES
.
174
11.2.2
EXISTING
SUBSPACE
PROJECTION
ALGORITHMS
.
176
11.3
DOMAIN
REGULARIZED
COMPONENT
ANALYSIS
(DRCA)
.
176
11.3.1
MATHEMATICAL
NOTATIONS
.
176
11.3.2
PROBLEM
FORMULATION
.
177
11.3.3
MODEL
OPTIMIZATION
.
179
11.3.4
REMARKS
ON
DRCA
.
181
11.4
EXPERIMENTS
.
181
11.4.1
EXPERIMENT
ON
BENCHMARK
SENSOR
DRIFT
DATA
.
181
11.4.2
EXPERIMENT
ON
E-NOSE
DATA
WITH
DRIFT
AND
SHIFT
.
185
11.4.3
PARAMETER
SENSITIVITY
ANALYSIS
.
188
11.4.4
DISCUSSION
.
188
11.5
SUMMARY
.
190
REFERENCES
.
190
12
CROSS-DOMAIN
SUBSPACE
LEARNING
APPROACH
.
193
12.1
INTRODUCTION
.
193
12.2
RELATED
WORK
.
195
12.2.1
REVIEW
OF
ELM
.
195
12.2.2
SUBSPACE
LEARNING
.
196
12.3
THE
PROPOSED
CDELM
METHOD
.
196
12.3.1
NOTATIONS
.
196
12.3.2
MODEL
FORMULATION
.
197
12.3.3
MODEL
OPTIMIZATION
.
199
12.4
EXPERIMENTS
.
200
12.4.1
DATA
DESCRIPTION
.
200
12.4.2
EXPERIMENTAL
SETTINGS
.
201
12.4.3
SINGLE-DOMAIN
SUBSPACE
PROJECTION
METHODS
.
201
12.4.4
CLASSIFICATION
RESULTS
.
202
12.4.5
PARAMETER
SENSITIVITY
.
204
12.5
SUMMARY
.
206
REFERENCES
.
207
XII
CONTENTS
13
DOMAIN
CORRECTION-BASED
ADAPTIVE
EXTREME
LEARNING
MACHINE
.
209
13.1
INTRODUCTION
.
209
13.2
RELATED
WORK
.
210
13.2.1
TRANSFER
LEARNING
.
210
13.2.2
EXTREME
LEARNING
MACHINE
.
211
13.3
THE
PROPOSED
METHOD
.
213
13.3.1
NOTATIONS
.
213
13.3.2
DOMAIN
CORRECTION
AND
ADAPTIVE
EXTREME
LEARNING
MACHINE
.
213
13.4
EXPERIMENTS
.
217
13.4.1
EXPERIMENT
ON
BACKGROUND
INTERFERENCE
DATA
.
218
13.4.2
EXPERIMENT
ON
SENSOR
DRIFT
DATA
.
220
13.5
SUMMARY
.
221
REFERENCES
.
223
14
MULTI-FEATURE
SEMI-SUPERVISED
LEARNING
APPROACH
.
225
14.1
INTRODUCTION
.
226
14.1.1
PROBLEM
STATEMENT
.
226
14.1.2
MOTIVATION
.
226
14.2
RELATED
WORK
.
227
14.3
MULTI-FEATURE
KERNEL
SEMI-SUPERVISED
JOINT
LEARNING
MODEL
.
228
14.3.1
NOTATIONS
.
228
14.3.2
MODEL
.
229
14.3.3
OPTIMIZATION
ALGORITHM
.
231
14.3.4
CLASSIFICATION
.
234
14.3.5
CONVERGENCE
.
235
14.3.6
COMPUTATIONAL
COMPLEXITY
.
236
14.3.7
REMARKS
ON
OPTIMALITY
CONDITION
.
237
14.4
EXPERIMENTS
ON
DRIFTED
E-NOSE
DATA
.
238
14.4.1
DESCRIPTION
OF
DATA
.
238
14.4.2
EXPERIMENTAL
SETUP
.
238
14.4.3
PARAMETER
SETTING
.
239
14.4.4
COMPARED
METHODS
.
239
14.4.5
RESULTS
AND
ANALYSIS
.
239
14.5
EXPERIMENTS
ON
MODULATED
E-NOSE
DATA
.
240
14.5.1
DESCRIPTION
OF
DATA
.
240
14.5.2
EXPERIMENTAL
SETUP
.
243
14.5.3
PARAMETER
SETTING
.
243
14.5.4
RESULTS
AND
ANALYSIS
.
243
14.6
SUMMARY
.
244
REFERENCES
.
244
CONTENTS
XIII
PART
IV
E-NOSE
DISTURBANCE
ELIMINATION:
CHALLENGE
III
15
PATTERN
RECOGNITION-BASED
INTERFERENCE
REDUCTION
.
249
15.1
INTRODUCTION
.
249
15.2
MATERIALS
AND
METHODS
.
251
15.2.1
EXPERIMENTAL
PLATFORM
.
251
15.2.2
SENSOR
SIGNAL
PREPROCESSING
.
251
15.2.3
E-NOSE
DATA
PREPARATION
.
251
15.2.4
FEATURE
SELECTION
OF
ABNORMAL
ODOR
.
253
15.2.5
GENETIC
CROSSOVER
OPERATOR
FOR
SOLUTION
OF
UNEVEN
FEATURES
.
254
15.2.6
DESCRIPTION
OF
LEARNER-
1
UNDER
MULTI-CLASS
CONDITION
.
255
15.2.7
DESCRIPTION
OF
LEAMER-2
UNDER
BINARY
CLASSIFICATION
CONDITION
.
257
15.2.8
ADAPTIVE
COUNTERACTION
MODEL
.
257
15.3
RESULTS
AND
DISCUSSION
.
259
15.3.1
RECOGNITION
ACCURACY
OF
LEARNER-
1
AND
LEAMER-2
.
259
15.3.2
ABNORMAL
ODOR
COUNTERACTION:
CASE
STUDY
.
260
15.3.3
DISCUSSION
.
262
15.4
SUMMARY
.
262
REFERENCES
.
263
16
PATTERN
MISMATCH
GUIDED
INTERFERENCE
ELIMINATION
.
265
16.1
INTRODUCTION
.
265
16.2
DATA
ACQUISITION
.
267
16.3
PROPOSED
PMIE
METHOD
.
267
16.3.1
MAIN
IDEA
.
267
16.3.2
PATTERN
MISMATCH-BASED
INTERFERENCE
ELIMINATION
(PMIE)
.
268
16.4
RESULTS
AND
DISCUSSION
.
272
16.4.1
DATA
PREPROCESSING
.
272
16.4.2
PMIE
TRAINING
ON
DATASET
1
.
272
16.4.3
THRESHOLD
ANALYSIS
BASED
ON
DATASET
2
.
273
16.4.4
INTERFERENCE
DISCRIMINATION
ON
DATASET
3
.
273
16.4.5
PMIE-BASED
INTERFERENCE
ELIMINATION
RESULT
.
276
16.5
SUMMARY
.
277
REFERENCES
.
277
17
SELF-EXPRESSION-BASED
ABNORMAL
ODOR
DETECTION
.
279
17.1
INTRODUCTION
.
279
17.1.1
BACKGROUND
.
279
17.1.2
PROBLEM
STATEMENT
.
280
17.1.3
MOTIVATION
.
280
XIV
CONTENTS
17.2
RELATED
WORK
.
282
17.3
SELF-EXPRESSION
MODEL
(SEM)
.
284
17.3.1
MODEL
FORMULATION
.
284
17.3.2
ALGORITHM
.
286
17.4
EXTREME
LEARNING
MACHINE-BASED
SELF-EXPRESSION
MODEL
(SE
2
LM)
.
287
17.4.1
MODEL
FORMULATION
.
287
17.4.2
ALGORITHM
.
289
17.5
EXPERIMENTS
.
290
17.5.1
ELECTRONIC
NOSE
AND
DATA
ACQUISITION
.
290
17.5.2
ABNORMAL
ODOR
DETECTION
BASED
ON
DATASET
1
.
291
17.5.3
VALIDATION
OF
REAL-TIME
SEQUENCE
ON
DATASET
2
.
295
17.5.4
VALIDATION
OF
REAL-TIME
SEQUENCE
ON
DATASET
3
.
295
17.6
DISCUSSION
.
296
17.7
SUMMARY
.
297
REFERENCES
.
297
PART
V
E-NOSE
DISCRETENESS
CORRECTION:
CHALLENGE
IV
18
AFFINE
CALIBRATION
TRANSFER
MODEL
.
301
18.1
INTRODUCTION
.
301
18.2
METHOD
.
303
18.2.1
CALIBRATION
STEP
.
303
18.2.2
PREDICTION
STEP
.
307
18.3
EXPERIMENTS
.
309
18.3.1
ELECTRONIC
NOSE
MODULE
.
309
18.3.2
GAS
DATASETS
.
309
18.4
RESULTS
AND
DISCUSSION
.
310
18.4.1
SENSOR
RESPONSE
CALIBRATION
.
310
18.4.2
CONCENTRATION
PREDICTION
.
314
18.5
SUMMARY
.
320
REFERENCES
.
320
19
INSTRUMENTAL
BATCH
CORRECTION
.
323
19.1
INTRODUCTION
.
323
19.2
MATERIALS
AND
METHOD
.
325
19.2.1
SENSORS
*
DISCRETENESS
.
325
19.2.2
REVIEW
OF
THE
GAT-RWLS
METHOD
.
326
19.2.3
INSTRUMENTAL
BATCH
CORRECTION
SCHEME
.
327
19.3
RESULTS
AND
DISCUSSION
.
328
19.4
SUMMARY
.
332
REFERENCES
.
333
CONTENTS
XV
20
BOOK
REVIEW
AND
FUTURE
WORK
.
335
20.1
INTRODUCTION
.
336
20.2
FUTURE
WORK
.
339 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Zhang, Lei Tian, Fengchun Zhang, David 1949- |
author_GND | (DE-588)12099190X |
author_facet | Zhang, Lei Tian, Fengchun Zhang, David 1949- |
author_role | aut aut aut |
author_sort | Zhang, Lei |
author_variant | l z lz f t ft d z dz |
building | Verbundindex |
bvnumber | BV046863786 |
classification_rvk | ZQ 3890 ZQ 3950 |
ctrlnum | (DE-599)DNB1166979512 |
dewey-full | 006.24835379 628.0287 681.754 |
dewey-hundreds | 000 - Computer science, information, general works 600 - Technology (Applied sciences) |
dewey-ones | 006 - Special computer methods 628 - Sanitary engineering 681 - Precision instruments and other devices |
dewey-raw | 006.24835379 628.0287 681.754 |
dewey-search | 006.24835379 628.0287 681.754 |
dewey-sort | 16.24835379 |
dewey-tens | 000 - Computer science, information, general works 620 - Engineering and allied operations 680 - Manufacture of products for specific uses |
discipline | Handwerk und Gewerbe / Verschiedene Technologien Informatik Bauingenieurwesen Elektrotechnik / Elektronik / Nachrichtentechnik Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik / Mechatronik |
discipline_str_mv | Handwerk und Gewerbe / Verschiedene Technologien Informatik Bauingenieurwesen Elektrotechnik / Elektronik / Nachrichtentechnik Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik / Mechatronik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02964nam a2200721 c 4500</leader><controlfield tag="001">BV046863786</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">200824s2018 si a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">20,A27</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1166979512</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789811321665</subfield><subfield code="c">Festeinband : EUR 128.39 (DE) (freier Preis), EUR 131.99 (AT) (freier Preis), CHF 132.00 (freier Preis)</subfield><subfield code="9">978-981-13-2166-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9811321663</subfield><subfield code="9">981-13-2166-3</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9789811321665</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1166979512</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">si</subfield><subfield code="c">XB-SG</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.24835379</subfield><subfield code="2">23/ger</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">628.0287</subfield><subfield code="2">23/ger</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">681.754</subfield><subfield code="2">23/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZQ 3890</subfield><subfield code="0">(DE-625)158086:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZQ 3950</subfield><subfield code="0">(DE-625)158090:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">621.3</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">004</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">670</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Lei</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Electronic nose: algorithmic challenges</subfield><subfield code="c">Lei Zhang, Fengchun Tian, David Zhang</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">Springer</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xv, 339 Seiten</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elektronische Nase</subfield><subfield code="0">(DE-588)1067516492</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Duftstoff</subfield><subfield code="0">(DE-588)4113361-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geruchsemission</subfield><subfield code="0">(DE-588)4156902-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Messung</subfield><subfield code="0">(DE-588)4038852-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Artificial Intelligence</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Bionic Perception</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Drift Compensation</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Electronic Nose</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Gas Sensing</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Intelligent Nose</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Machine Learning</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Machine Olfaction</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Odor Recognition</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Pattern Recognition</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Elektronische Nase</subfield><subfield code="0">(DE-588)1067516492</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geruchsemission</subfield><subfield code="0">(DE-588)4156902-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Duftstoff</subfield><subfield code="0">(DE-588)4113361-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Messung</subfield><subfield code="0">(DE-588)4038852-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tian, Fengchun</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, David</subfield><subfield code="d">1949-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)12099190X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Springer Malaysia Representative Office</subfield><subfield code="0">(DE-588)1065365012</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="t">Electronic Nose: Algorithmic Challenges</subfield><subfield code="b">1st edition 2018</subfield><subfield code="d">Singapore : Springer Singapore, 2018</subfield><subfield code="h">Online-Ressource</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=ad266c9db5714817a826f8f5ba59af0e&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="u">http://www.springer.com/</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">B:DE-101</subfield><subfield code="q">application/pdf</subfield><subfield code="u">https://d-nb.info/1166979512/04</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032272392&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032272392</subfield></datafield></record></collection> |
id | DE-604.BV046863786 |
illustrated | Illustrated |
index_date | 2024-07-03T15:13:43Z |
indexdate | 2024-07-10T08:55:55Z |
institution | BVB |
institution_GND | (DE-588)1065365012 |
isbn | 9789811321665 9811321663 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032272392 |
open_access_boolean | |
owner | DE-83 |
owner_facet | DE-83 |
physical | xv, 339 Seiten Illustrationen |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Springer |
record_format | marc |
spelling | Zhang, Lei Verfasser aut Electronic nose: algorithmic challenges Lei Zhang, Fengchun Tian, David Zhang Singapore Springer [2018] xv, 339 Seiten Illustrationen txt rdacontent n rdamedia nc rdacarrier Elektronische Nase (DE-588)1067516492 gnd rswk-swf Duftstoff (DE-588)4113361-4 gnd rswk-swf Geruchsemission (DE-588)4156902-7 gnd rswk-swf Messung (DE-588)4038852-9 gnd rswk-swf Artificial Intelligence Bionic Perception Drift Compensation Electronic Nose Gas Sensing Intelligent Nose Machine Learning Machine Olfaction Odor Recognition Pattern Recognition Elektronische Nase (DE-588)1067516492 s Geruchsemission (DE-588)4156902-7 s Duftstoff (DE-588)4113361-4 s Messung (DE-588)4038852-9 s DE-604 Tian, Fengchun Verfasser aut Zhang, David 1949- Verfasser (DE-588)12099190X aut Springer Malaysia Representative Office (DE-588)1065365012 pbl Erscheint auch als Online-Ausgabe Electronic Nose: Algorithmic Challenges 1st edition 2018 Singapore : Springer Singapore, 2018 Online-Ressource X:MVB text/html http://deposit.dnb.de/cgi-bin/dokserv?id=ad266c9db5714817a826f8f5ba59af0e&prov=M&dok_var=1&dok_ext=htm Inhaltstext X:MVB http://www.springer.com/ B:DE-101 application/pdf https://d-nb.info/1166979512/04 Inhaltsverzeichnis DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032272392&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Zhang, Lei Tian, Fengchun Zhang, David 1949- Electronic nose: algorithmic challenges Elektronische Nase (DE-588)1067516492 gnd Duftstoff (DE-588)4113361-4 gnd Geruchsemission (DE-588)4156902-7 gnd Messung (DE-588)4038852-9 gnd |
subject_GND | (DE-588)1067516492 (DE-588)4113361-4 (DE-588)4156902-7 (DE-588)4038852-9 |
title | Electronic nose: algorithmic challenges |
title_auth | Electronic nose: algorithmic challenges |
title_exact_search | Electronic nose: algorithmic challenges |
title_exact_search_txtP | Electronic nose: algorithmic challenges |
title_full | Electronic nose: algorithmic challenges Lei Zhang, Fengchun Tian, David Zhang |
title_fullStr | Electronic nose: algorithmic challenges Lei Zhang, Fengchun Tian, David Zhang |
title_full_unstemmed | Electronic nose: algorithmic challenges Lei Zhang, Fengchun Tian, David Zhang |
title_short | Electronic nose: algorithmic challenges |
title_sort | electronic nose algorithmic challenges |
topic | Elektronische Nase (DE-588)1067516492 gnd Duftstoff (DE-588)4113361-4 gnd Geruchsemission (DE-588)4156902-7 gnd Messung (DE-588)4038852-9 gnd |
topic_facet | Elektronische Nase Duftstoff Geruchsemission Messung |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=ad266c9db5714817a826f8f5ba59af0e&prov=M&dok_var=1&dok_ext=htm http://www.springer.com/ https://d-nb.info/1166979512/04 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032272392&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT zhanglei electronicnosealgorithmicchallenges AT tianfengchun electronicnosealgorithmicchallenges AT zhangdavid electronicnosealgorithmicchallenges AT springermalaysiarepresentativeoffice electronicnosealgorithmicchallenges |