Theta functions, elliptic functions and π:
This book presents several results on elliptic functions and Pi, using Jacobi’s triple product identity as a tool to show suprising connections between different topics within number theory such as theta functions, Eisenstein series, the Dedekind delta function, and Ramanujan’s work on Pi. The inclu...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston
De Gruyter
[2020]
|
Schriftenreihe: | De Gruyter Textbook
|
Schlagworte: | |
Online-Zugang: | FAB01 FAW01 FCO01 FHA01 FHR01 FKE01 FLA01 TUM01 UBR01 UBY01 UPA01 URL des Erstveröffentlichers |
Zusammenfassung: | This book presents several results on elliptic functions and Pi, using Jacobi’s triple product identity as a tool to show suprising connections between different topics within number theory such as theta functions, Eisenstein series, the Dedekind delta function, and Ramanujan’s work on Pi. The included exercises make it ideal for both classroom use and self-study |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed 23. Jul 2020) |
Beschreibung: | 1 online resource (XVI, 122 pages) |
ISBN: | 9783110541915 |
DOI: | 10.1515/9783110541915 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV046846454 | ||
003 | DE-604 | ||
005 | 20221206 | ||
007 | cr|uuu---uuuuu | ||
008 | 200810s2020 |||| o||u| ||||||eng d | ||
020 | |a 9783110541915 |9 978-3-11-054191-5 | ||
024 | 7 | |a 10.1515/9783110541915 |2 doi | |
035 | |a (ZDB-23-DGG)9783110541915 | ||
035 | |a (OCoLC)1193289931 | ||
035 | |a (DE-599)BVBBV046846454 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-Aug4 |a DE-898 |a DE-859 |a DE-860 |a DE-91 |a DE-706 |a DE-739 |a DE-1043 |a DE-858 |a DE-355 | ||
084 | |a SK 680 |0 (DE-625)143252: |2 rvk | ||
100 | 1 | |a Chan, Heng Huat |d 1967- |e Verfasser |0 (DE-588)1215107838 |4 aut | |
245 | 1 | 0 | |a Theta functions, elliptic functions and π |c Heng Huat Chan |
264 | 1 | |a Berlin ; Boston |b De Gruyter |c [2020] | |
264 | 4 | |c © 2020 | |
300 | |a 1 online resource (XVI, 122 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a De Gruyter Textbook | |
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed 23. Jul 2020) | ||
520 | |a This book presents several results on elliptic functions and Pi, using Jacobi’s triple product identity as a tool to show suprising connections between different topics within number theory such as theta functions, Eisenstein series, the Dedekind delta function, and Ramanujan’s work on Pi. The included exercises make it ideal for both classroom use and self-study | ||
546 | |a In English | ||
650 | 4 | |a Eisenstein-Reihe | |
650 | 4 | |a Elliptische Funktion | |
650 | 4 | |a Modulform | |
650 | 4 | |a Pi ‹Zahl› | |
650 | 4 | |a Zahlentheorie | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-11-054071-0 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-3-11-054075-8 |
856 | 4 | 0 | |u https://doi.org/10.1515/9783110541915 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG |a ZDB-23-DMA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032255361 | ||
966 | e | |u https://doi.org/10.1515/9783110541915 |l FAB01 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110541915 |l FAW01 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110541915 |l FCO01 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110541915 |l FHA01 |p ZDB-23-DGG |q FHA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110541915 |l FHR01 |p ZDB-23-DMA |q FHR_ZDB-23-DMA20 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110541915 |l FKE01 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110541915 |l FLA01 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110541915 |l TUM01 |p ZDB-23-DMA |q TUM_Paketkauf |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110541915 |l UBR01 |p ZDB-23-DGG |q UBR_Pick&Choose 2022 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110541915 |l UBY01 |p ZDB-23-DMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110541915 |l UPA01 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181676675301376 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Chan, Heng Huat 1967- |
author_GND | (DE-588)1215107838 |
author_facet | Chan, Heng Huat 1967- |
author_role | aut |
author_sort | Chan, Heng Huat 1967- |
author_variant | h h c hh hhc |
building | Verbundindex |
bvnumber | BV046846454 |
classification_rvk | SK 680 |
collection | ZDB-23-DGG ZDB-23-DMA |
ctrlnum | (ZDB-23-DGG)9783110541915 (OCoLC)1193289931 (DE-599)BVBBV046846454 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1515/9783110541915 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03172nmm a2200589zc 4500</leader><controlfield tag="001">BV046846454</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20221206 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200810s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110541915</subfield><subfield code="9">978-3-11-054191-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110541915</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9783110541915</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1193289931</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046846454</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 680</subfield><subfield code="0">(DE-625)143252:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chan, Heng Huat</subfield><subfield code="d">1967-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1215107838</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Theta functions, elliptic functions and π</subfield><subfield code="c">Heng Huat Chan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Boston</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (XVI, 122 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">De Gruyter Textbook</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed 23. Jul 2020)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book presents several results on elliptic functions and Pi, using Jacobi’s triple product identity as a tool to show suprising connections between different topics within number theory such as theta functions, Eisenstein series, the Dedekind delta function, and Ramanujan’s work on Pi. The included exercises make it ideal for both classroom use and self-study</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eisenstein-Reihe</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Elliptische Funktion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modulform</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pi ‹Zahl›</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Zahlentheorie</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-11-054071-0</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-3-11-054075-8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9783110541915</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-DMA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032255361</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110541915</subfield><subfield code="l">FAB01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110541915</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110541915</subfield><subfield code="l">FCO01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110541915</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FHA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110541915</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">FHR_ZDB-23-DMA20</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110541915</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110541915</subfield><subfield code="l">FLA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110541915</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">TUM_Paketkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110541915</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UBR_Pick&Choose 2022</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110541915</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110541915</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046846454 |
illustrated | Not Illustrated |
index_date | 2024-07-03T15:08:34Z |
indexdate | 2024-07-10T08:55:27Z |
institution | BVB |
isbn | 9783110541915 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032255361 |
oclc_num | 1193289931 |
open_access_boolean | |
owner | DE-1046 DE-Aug4 DE-898 DE-BY-UBR DE-859 DE-860 DE-91 DE-BY-TUM DE-706 DE-739 DE-1043 DE-858 DE-355 DE-BY-UBR |
owner_facet | DE-1046 DE-Aug4 DE-898 DE-BY-UBR DE-859 DE-860 DE-91 DE-BY-TUM DE-706 DE-739 DE-1043 DE-858 DE-355 DE-BY-UBR |
physical | 1 online resource (XVI, 122 pages) |
psigel | ZDB-23-DGG ZDB-23-DMA ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FCO_PDA_DGG ZDB-23-DGG FHA_PDA_DGG ZDB-23-DMA FHR_ZDB-23-DMA20 ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DMA TUM_Paketkauf ZDB-23-DGG UBR_Pick&Choose 2022 ZDB-23-DGG UPA_PDA_DGG |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | De Gruyter |
record_format | marc |
series2 | De Gruyter Textbook |
spelling | Chan, Heng Huat 1967- Verfasser (DE-588)1215107838 aut Theta functions, elliptic functions and π Heng Huat Chan Berlin ; Boston De Gruyter [2020] © 2020 1 online resource (XVI, 122 pages) txt rdacontent c rdamedia cr rdacarrier De Gruyter Textbook Description based on online resource; title from PDF title page (publisher's Web site, viewed 23. Jul 2020) This book presents several results on elliptic functions and Pi, using Jacobi’s triple product identity as a tool to show suprising connections between different topics within number theory such as theta functions, Eisenstein series, the Dedekind delta function, and Ramanujan’s work on Pi. The included exercises make it ideal for both classroom use and self-study In English Eisenstein-Reihe Elliptische Funktion Modulform Pi ‹Zahl› Zahlentheorie Erscheint auch als Druck-Ausgabe 978-3-11-054071-0 Erscheint auch als Online-Ausgabe, EPUB 978-3-11-054075-8 https://doi.org/10.1515/9783110541915 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Chan, Heng Huat 1967- Theta functions, elliptic functions and π Eisenstein-Reihe Elliptische Funktion Modulform Pi ‹Zahl› Zahlentheorie |
title | Theta functions, elliptic functions and π |
title_auth | Theta functions, elliptic functions and π |
title_exact_search | Theta functions, elliptic functions and π |
title_exact_search_txtP | Theta functions, elliptic functions and π |
title_full | Theta functions, elliptic functions and π Heng Huat Chan |
title_fullStr | Theta functions, elliptic functions and π Heng Huat Chan |
title_full_unstemmed | Theta functions, elliptic functions and π Heng Huat Chan |
title_short | Theta functions, elliptic functions and π |
title_sort | theta functions elliptic functions and π |
topic | Eisenstein-Reihe Elliptische Funktion Modulform Pi ‹Zahl› Zahlentheorie |
topic_facet | Eisenstein-Reihe Elliptische Funktion Modulform Pi ‹Zahl› Zahlentheorie |
url | https://doi.org/10.1515/9783110541915 |
work_keys_str_mv | AT chanhenghuat thetafunctionsellipticfunctionsandp |