Smart delivery systems: solving complex vehicle routing problems
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam, Netherlands ; Kidlington, Oxford, United Kingdom ; Cambridge, MA, United States
Elsevier
[2020]
|
Schriftenreihe: | Intelligent data centric systems
|
Schlagworte: | |
Online-Zugang: | TUM01 |
Beschreibung: | Intro; Title page; Table of Contents; Copyright; Dedication; Contributors; Chapter 1: Current and emerging formulations and models of real-life rich vehicle routing problems; Abstract; Acknowledgement; 1.1. Introduction; 1.2. Vehicle Routing Problem and its variants; 1.3. Bus Routing Problem and its variants; 1.4. Unmanned Vehicle Routing Problem; 1.5. The other routing problems of electric vehicles; 1.6. Conclusions; References; Chapter 2: On a road to optimal fleet routing algorithms: a gentle introduction to the state-of-the-art; Abstract; Acknowledgements; 2.1. Introduction 2.2. Optimal Route Choice problem2.3. Traveling Salesman Problem; 2.4. Vehicle Routing Problem; 2.5. Conclusions; References; Chapter 3: Exact algorithms for solving rich vehicle routing problems; Abstract; 3.1. Branch-and-bound methods; 3.2. Branch-and-cut methods; 3.3. Branch-and-price methods; 3.4. Branch-and-cut-and-price methods; 3.5. Constraint Programming; 3.6. Summary; References; Chapter 4: Heuristics, metaheuristics, and hyperheuristics for rich vehicle routing problems; Abstract; 4.1. Heuristics for rich vehicle routing problems 4.2. Metaheuristics for rich vehicle routing problems4.3. Hyperheuristics for rich vehicle routing problems; 4.4. Summary; References; Chapter 5: Hybrid algorithms for rich vehicle routing problems: a survey; Abstract; 5.1. Introduction; 5.2. Mathematical model for traditional CVRP; 5.3. From traditional VRP to rich VRP; 5.4. Solution approaches for RVRPs; 5.5. Literature review of hybrid approaches for VRPs; 5.6. Conclusion and future directions; References; Chapter 6: Parallel algorithms for solving rich vehicle routing problems; Abstract; 6.1. Parallelism ideas and taxonomies 6.2. Cooperative search strategies6.3. Parallel tabu search; 6.4. Parallel genetic and evolutionary algorithms; 6.5. Parallel memetic algorithms; 6.6. Parallel ant colony algorithms; 6.7. Parallel simulated annealing; 6.8. Summary; References; Chapter 7: Where machine learning meets smart delivery systems; Abstract; Acknowledgements; 7.1. Introduction; 7.2. Tuning hyper-parameters of existent algorithms for solving rich vehicle routing problems using machine learning; 7.3. Solving rich vehicle routing problems using hybrid algorithms that exploit machine learning 7.4. Solving rich vehicle routing problems using data-driven machine learning algorithms7.5. Summary; References; Chapter 8: How to assess your Smart Delivery System?; Abstract; Acknowledgements; 8.1. Introduction; 8.2. Literature review; 8.3. Notation and definition; 8.4. Model description; 8.5. Real-world PostVRP benchmark (RWPostVRPB); 8.6. Final remarks and conclusion; References; Chapter 9: Practical applications of smart delivery systems; Abstract; 9.1. Introduction; 9.2. Literature review; 9.3. Mine evacuation as a rich VRP; 9.4. Evacuation scenario examples. - 9.5. Summary and future work |
Beschreibung: | 1 Online-Ressource ( 345 Seiten) |
ISBN: | 012815716X 9780128157169 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV046841058 | ||
003 | DE-604 | ||
005 | 20210118 | ||
007 | cr|uuu---uuuuu | ||
008 | 200806s2020 |||| o||u| ||||||eng d | ||
020 | |a 012815716X |9 0-12-815716-X | ||
020 | |a 9780128157169 |9 978-0-12-815716-9 | ||
035 | |a (ZDB-4-NLEBK)2118540 | ||
035 | |a (OCoLC)1193289291 | ||
035 | |a (DE-599)BVBBV046841058 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 | ||
082 | 0 | |a 658.802 | |
245 | 1 | 0 | |a Smart delivery systems |b solving complex vehicle routing problems |c edited by Jakub Nalepa |
264 | 1 | |a Amsterdam, Netherlands ; Kidlington, Oxford, United Kingdom ; Cambridge, MA, United States |b Elsevier |c [2020] | |
300 | |a 1 Online-Ressource ( 345 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Intelligent data centric systems | |
500 | |a Intro; Title page; Table of Contents; Copyright; Dedication; Contributors; Chapter 1: Current and emerging formulations and models of real-life rich vehicle routing problems; Abstract; Acknowledgement; 1.1. Introduction; 1.2. Vehicle Routing Problem and its variants; 1.3. Bus Routing Problem and its variants; 1.4. Unmanned Vehicle Routing Problem; 1.5. The other routing problems of electric vehicles; 1.6. Conclusions; References; Chapter 2: On a road to optimal fleet routing algorithms: a gentle introduction to the state-of-the-art; Abstract; Acknowledgements; 2.1. Introduction | ||
500 | |a 2.2. Optimal Route Choice problem2.3. Traveling Salesman Problem; 2.4. Vehicle Routing Problem; 2.5. Conclusions; References; Chapter 3: Exact algorithms for solving rich vehicle routing problems; Abstract; 3.1. Branch-and-bound methods; 3.2. Branch-and-cut methods; 3.3. Branch-and-price methods; 3.4. Branch-and-cut-and-price methods; 3.5. Constraint Programming; 3.6. Summary; References; Chapter 4: Heuristics, metaheuristics, and hyperheuristics for rich vehicle routing problems; Abstract; 4.1. Heuristics for rich vehicle routing problems | ||
500 | |a 4.2. Metaheuristics for rich vehicle routing problems4.3. Hyperheuristics for rich vehicle routing problems; 4.4. Summary; References; Chapter 5: Hybrid algorithms for rich vehicle routing problems: a survey; Abstract; 5.1. Introduction; 5.2. Mathematical model for traditional CVRP; 5.3. From traditional VRP to rich VRP; 5.4. Solution approaches for RVRPs; 5.5. Literature review of hybrid approaches for VRPs; 5.6. Conclusion and future directions; References; Chapter 6: Parallel algorithms for solving rich vehicle routing problems; Abstract; 6.1. Parallelism ideas and taxonomies | ||
500 | |a 6.2. Cooperative search strategies6.3. Parallel tabu search; 6.4. Parallel genetic and evolutionary algorithms; 6.5. Parallel memetic algorithms; 6.6. Parallel ant colony algorithms; 6.7. Parallel simulated annealing; 6.8. Summary; References; Chapter 7: Where machine learning meets smart delivery systems; Abstract; Acknowledgements; 7.1. Introduction; 7.2. Tuning hyper-parameters of existent algorithms for solving rich vehicle routing problems using machine learning; 7.3. Solving rich vehicle routing problems using hybrid algorithms that exploit machine learning | ||
500 | |a 7.4. Solving rich vehicle routing problems using data-driven machine learning algorithms7.5. Summary; References; Chapter 8: How to assess your Smart Delivery System?; Abstract; Acknowledgements; 8.1. Introduction; 8.2. Literature review; 8.3. Notation and definition; 8.4. Model description; 8.5. Real-world PostVRP benchmark (RWPostVRPB); 8.6. Final remarks and conclusion; References; Chapter 9: Practical applications of smart delivery systems; Abstract; 9.1. Introduction; 9.2. Literature review; 9.3. Mine evacuation as a rich VRP; 9.4. Evacuation scenario examples. - 9.5. Summary and future work | ||
650 | 4 | |a Business logistics / Computer simulation | |
650 | 4 | |a Vehicle routing problem | |
700 | 1 | |a Nalepa, Jakub |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-12-815715-2 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 0128157151 |
912 | |a ZDB-4-NLEBK | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032250019 | ||
966 | e | |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2118540 |l TUM01 |p ZDB-4-NLEBK |q TUM_PDA_EBSCOBAE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181669750505472 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Nalepa, Jakub |
author2_role | edt |
author2_variant | j n jn |
author_facet | Nalepa, Jakub |
building | Verbundindex |
bvnumber | BV046841058 |
collection | ZDB-4-NLEBK |
ctrlnum | (ZDB-4-NLEBK)2118540 (OCoLC)1193289291 (DE-599)BVBBV046841058 |
dewey-full | 658.802 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 658 - General management |
dewey-raw | 658.802 |
dewey-search | 658.802 |
dewey-sort | 3658.802 |
dewey-tens | 650 - Management and auxiliary services |
discipline | Wirtschaftswissenschaften |
discipline_str_mv | Wirtschaftswissenschaften |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04385nmm a2200433zc 4500</leader><controlfield tag="001">BV046841058</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210118 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200806s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">012815716X</subfield><subfield code="9">0-12-815716-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780128157169</subfield><subfield code="9">978-0-12-815716-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-4-NLEBK)2118540</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1193289291</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046841058</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">658.802</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Smart delivery systems</subfield><subfield code="b">solving complex vehicle routing problems</subfield><subfield code="c">edited by Jakub Nalepa</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam, Netherlands ; Kidlington, Oxford, United Kingdom ; Cambridge, MA, United States</subfield><subfield code="b">Elsevier</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource ( 345 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Intelligent data centric systems</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Intro; Title page; Table of Contents; Copyright; Dedication; Contributors; Chapter 1: Current and emerging formulations and models of real-life rich vehicle routing problems; Abstract; Acknowledgement; 1.1. Introduction; 1.2. Vehicle Routing Problem and its variants; 1.3. Bus Routing Problem and its variants; 1.4. Unmanned Vehicle Routing Problem; 1.5. The other routing problems of electric vehicles; 1.6. Conclusions; References; Chapter 2: On a road to optimal fleet routing algorithms: a gentle introduction to the state-of-the-art; Abstract; Acknowledgements; 2.1. Introduction</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">2.2. Optimal Route Choice problem2.3. Traveling Salesman Problem; 2.4. Vehicle Routing Problem; 2.5. Conclusions; References; Chapter 3: Exact algorithms for solving rich vehicle routing problems; Abstract; 3.1. Branch-and-bound methods; 3.2. Branch-and-cut methods; 3.3. Branch-and-price methods; 3.4. Branch-and-cut-and-price methods; 3.5. Constraint Programming; 3.6. Summary; References; Chapter 4: Heuristics, metaheuristics, and hyperheuristics for rich vehicle routing problems; Abstract; 4.1. Heuristics for rich vehicle routing problems</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">4.2. Metaheuristics for rich vehicle routing problems4.3. Hyperheuristics for rich vehicle routing problems; 4.4. Summary; References; Chapter 5: Hybrid algorithms for rich vehicle routing problems: a survey; Abstract; 5.1. Introduction; 5.2. Mathematical model for traditional CVRP; 5.3. From traditional VRP to rich VRP; 5.4. Solution approaches for RVRPs; 5.5. Literature review of hybrid approaches for VRPs; 5.6. Conclusion and future directions; References; Chapter 6: Parallel algorithms for solving rich vehicle routing problems; Abstract; 6.1. Parallelism ideas and taxonomies</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">6.2. Cooperative search strategies6.3. Parallel tabu search; 6.4. Parallel genetic and evolutionary algorithms; 6.5. Parallel memetic algorithms; 6.6. Parallel ant colony algorithms; 6.7. Parallel simulated annealing; 6.8. Summary; References; Chapter 7: Where machine learning meets smart delivery systems; Abstract; Acknowledgements; 7.1. Introduction; 7.2. Tuning hyper-parameters of existent algorithms for solving rich vehicle routing problems using machine learning; 7.3. Solving rich vehicle routing problems using hybrid algorithms that exploit machine learning</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">7.4. Solving rich vehicle routing problems using data-driven machine learning algorithms7.5. Summary; References; Chapter 8: How to assess your Smart Delivery System?; Abstract; Acknowledgements; 8.1. Introduction; 8.2. Literature review; 8.3. Notation and definition; 8.4. Model description; 8.5. Real-world PostVRP benchmark (RWPostVRPB); 8.6. Final remarks and conclusion; References; Chapter 9: Practical applications of smart delivery systems; Abstract; 9.1. Introduction; 9.2. Literature review; 9.3. Mine evacuation as a rich VRP; 9.4. Evacuation scenario examples. - 9.5. Summary and future work</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Business logistics / Computer simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vehicle routing problem</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nalepa, Jakub</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-12-815715-2</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">0128157151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-NLEBK</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032250019</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2118540</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-4-NLEBK</subfield><subfield code="q">TUM_PDA_EBSCOBAE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046841058 |
illustrated | Not Illustrated |
index_date | 2024-07-03T15:07:51Z |
indexdate | 2024-07-10T08:55:20Z |
institution | BVB |
isbn | 012815716X 9780128157169 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032250019 |
oclc_num | 1193289291 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource ( 345 Seiten) |
psigel | ZDB-4-NLEBK ZDB-4-NLEBK TUM_PDA_EBSCOBAE_Kauf |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Elsevier |
record_format | marc |
series2 | Intelligent data centric systems |
spelling | Smart delivery systems solving complex vehicle routing problems edited by Jakub Nalepa Amsterdam, Netherlands ; Kidlington, Oxford, United Kingdom ; Cambridge, MA, United States Elsevier [2020] 1 Online-Ressource ( 345 Seiten) txt rdacontent c rdamedia cr rdacarrier Intelligent data centric systems Intro; Title page; Table of Contents; Copyright; Dedication; Contributors; Chapter 1: Current and emerging formulations and models of real-life rich vehicle routing problems; Abstract; Acknowledgement; 1.1. Introduction; 1.2. Vehicle Routing Problem and its variants; 1.3. Bus Routing Problem and its variants; 1.4. Unmanned Vehicle Routing Problem; 1.5. The other routing problems of electric vehicles; 1.6. Conclusions; References; Chapter 2: On a road to optimal fleet routing algorithms: a gentle introduction to the state-of-the-art; Abstract; Acknowledgements; 2.1. Introduction 2.2. Optimal Route Choice problem2.3. Traveling Salesman Problem; 2.4. Vehicle Routing Problem; 2.5. Conclusions; References; Chapter 3: Exact algorithms for solving rich vehicle routing problems; Abstract; 3.1. Branch-and-bound methods; 3.2. Branch-and-cut methods; 3.3. Branch-and-price methods; 3.4. Branch-and-cut-and-price methods; 3.5. Constraint Programming; 3.6. Summary; References; Chapter 4: Heuristics, metaheuristics, and hyperheuristics for rich vehicle routing problems; Abstract; 4.1. Heuristics for rich vehicle routing problems 4.2. Metaheuristics for rich vehicle routing problems4.3. Hyperheuristics for rich vehicle routing problems; 4.4. Summary; References; Chapter 5: Hybrid algorithms for rich vehicle routing problems: a survey; Abstract; 5.1. Introduction; 5.2. Mathematical model for traditional CVRP; 5.3. From traditional VRP to rich VRP; 5.4. Solution approaches for RVRPs; 5.5. Literature review of hybrid approaches for VRPs; 5.6. Conclusion and future directions; References; Chapter 6: Parallel algorithms for solving rich vehicle routing problems; Abstract; 6.1. Parallelism ideas and taxonomies 6.2. Cooperative search strategies6.3. Parallel tabu search; 6.4. Parallel genetic and evolutionary algorithms; 6.5. Parallel memetic algorithms; 6.6. Parallel ant colony algorithms; 6.7. Parallel simulated annealing; 6.8. Summary; References; Chapter 7: Where machine learning meets smart delivery systems; Abstract; Acknowledgements; 7.1. Introduction; 7.2. Tuning hyper-parameters of existent algorithms for solving rich vehicle routing problems using machine learning; 7.3. Solving rich vehicle routing problems using hybrid algorithms that exploit machine learning 7.4. Solving rich vehicle routing problems using data-driven machine learning algorithms7.5. Summary; References; Chapter 8: How to assess your Smart Delivery System?; Abstract; Acknowledgements; 8.1. Introduction; 8.2. Literature review; 8.3. Notation and definition; 8.4. Model description; 8.5. Real-world PostVRP benchmark (RWPostVRPB); 8.6. Final remarks and conclusion; References; Chapter 9: Practical applications of smart delivery systems; Abstract; 9.1. Introduction; 9.2. Literature review; 9.3. Mine evacuation as a rich VRP; 9.4. Evacuation scenario examples. - 9.5. Summary and future work Business logistics / Computer simulation Vehicle routing problem Nalepa, Jakub edt Erscheint auch als Druck-Ausgabe 978-0-12-815715-2 Erscheint auch als Druck-Ausgabe 0128157151 |
spellingShingle | Smart delivery systems solving complex vehicle routing problems Business logistics / Computer simulation Vehicle routing problem |
title | Smart delivery systems solving complex vehicle routing problems |
title_auth | Smart delivery systems solving complex vehicle routing problems |
title_exact_search | Smart delivery systems solving complex vehicle routing problems |
title_exact_search_txtP | Smart delivery systems solving complex vehicle routing problems |
title_full | Smart delivery systems solving complex vehicle routing problems edited by Jakub Nalepa |
title_fullStr | Smart delivery systems solving complex vehicle routing problems edited by Jakub Nalepa |
title_full_unstemmed | Smart delivery systems solving complex vehicle routing problems edited by Jakub Nalepa |
title_short | Smart delivery systems |
title_sort | smart delivery systems solving complex vehicle routing problems |
title_sub | solving complex vehicle routing problems |
topic | Business logistics / Computer simulation Vehicle routing problem |
topic_facet | Business logistics / Computer simulation Vehicle routing problem |
work_keys_str_mv | AT nalepajakub smartdeliverysystemssolvingcomplexvehicleroutingproblems |