Mild Differentiability Conditions for Newton's Method in Banach Spaces:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cham
Springer International Publishing
2020
Cham Birkhäuser |
Ausgabe: | 1st ed. 2020 |
Schriftenreihe: | Frontiers in Mathematics
|
Schlagworte: | |
Online-Zugang: | BTU01 FHN01 FHR01 FRO01 FWS01 FWS02 HTW01 TUM01 UBA01 UBM01 UBT01 UBW01 UEI01 UPA01 Volltext |
Beschreibung: | 1 Online-Ressource (XIII, 178 p. 51 illus., 45 illus. in color) |
ISBN: | 9783030487027 |
ISSN: | 1660-8046 |
DOI: | 10.1007/978-3-030-48702-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV046835057 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 200803s2020 |||| o||u| ||||||eng d | ||
020 | |a 9783030487027 |c Online |9 978-3-030-48702-7 | ||
024 | 7 | |a 10.1007/978-3-030-48702-7 |2 doi | |
035 | |a (ZDB-2-SMA)9783030487027 | ||
035 | |a (OCoLC)1193290622 | ||
035 | |a (DE-599)BVBBV046835057 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-19 |a DE-898 |a DE-861 |a DE-188 |a DE-523 |a DE-863 |a DE-20 |a DE-862 |a DE-92 |a DE-824 |a DE-384 |a DE-703 |a DE-739 |a DE-634 | ||
082 | 0 | |a 515.724 |2 23 | |
084 | |a SK 920 |0 (DE-625)143272: |2 rvk | ||
084 | |a SK 620 |0 (DE-625)143249: |2 rvk | ||
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Ezquerro Fernandez, José Antonio |e Verfasser |4 aut | |
245 | 1 | 0 | |a Mild Differentiability Conditions for Newton's Method in Banach Spaces |c by José Antonio Ezquerro Fernandez, Miguel Ángel Hernández Verón |
250 | |a 1st ed. 2020 | ||
264 | 1 | |a Cham |b Springer International Publishing |c 2020 | |
264 | 1 | |a Cham |b Birkhäuser | |
300 | |a 1 Online-Ressource (XIII, 178 p. 51 illus., 45 illus. in color) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Frontiers in Mathematics |x 1660-8046 | |
650 | 4 | |a Operator Theory | |
650 | 4 | |a Numerical Analysis | |
650 | 4 | |a Integral Equations | |
650 | 4 | |a Ordinary Differential Equations | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Operator theory | |
650 | 4 | |a Numerical analysis | |
650 | 4 | |a Integral equations | |
650 | 4 | |a Differential equations | |
650 | 4 | |a Partial differential equations | |
700 | 1 | |a Hernández Verón, Miguel Ángel |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-030-48701-0 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-030-48703-4 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-030-48702-7 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SMA | ||
940 | 1 | |q ZDB-2-SMA_2020_Fremddaten | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032244143 | ||
966 | e | |u https://doi.org/10.1007/978-3-030-48702-7 |l BTU01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-48702-7 |l FHN01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-48702-7 |l FHR01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-48702-7 |l FRO01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-48702-7 |l FWS01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-48702-7 |l FWS02 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-48702-7 |l HTW01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-48702-7 |l TUM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-48702-7 |l UBA01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-48702-7 |l UBM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-48702-7 |l UBT01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-48702-7 |l UBW01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-48702-7 |l UEI01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-48702-7 |l UPA01 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
DE-BY-FWS_katkey | 847268 |
---|---|
_version_ | 1806192033196408832 |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Ezquerro Fernandez, José Antonio Hernández Verón, Miguel Ángel |
author_facet | Ezquerro Fernandez, José Antonio Hernández Verón, Miguel Ángel |
author_role | aut aut |
author_sort | Ezquerro Fernandez, José Antonio |
author_variant | f j a e fja fjae v m á h vmá vmáh |
building | Verbundindex |
bvnumber | BV046835057 |
classification_rvk | SK 920 SK 620 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA |
ctrlnum | (ZDB-2-SMA)9783030487027 (OCoLC)1193290622 (DE-599)BVBBV046835057 |
dewey-full | 515.724 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.724 |
dewey-search | 515.724 |
dewey-sort | 3515.724 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1007/978-3-030-48702-7 |
edition | 1st ed. 2020 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03420nmm a2200721zcb4500</leader><controlfield tag="001">BV046835057</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200803s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030487027</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-030-48702-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-030-48702-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SMA)9783030487027</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1193290622</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046835057</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.724</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 920</subfield><subfield code="0">(DE-625)143272:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 620</subfield><subfield code="0">(DE-625)143249:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ezquerro Fernandez, José Antonio</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mild Differentiability Conditions for Newton's Method in Banach Spaces</subfield><subfield code="c">by José Antonio Ezquerro Fernandez, Miguel Ángel Hernández Verón</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 2020</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer International Publishing</subfield><subfield code="c">2020</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Birkhäuser</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIII, 178 p. 51 illus., 45 illus. in color)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Frontiers in Mathematics</subfield><subfield code="x">1660-8046</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ordinary Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial differential equations</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hernández Verón, Miguel Ángel</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-030-48701-0</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-030-48703-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-030-48702-7</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_2020_Fremddaten</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032244143</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-48702-7</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-48702-7</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-48702-7</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-48702-7</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-48702-7</subfield><subfield code="l">FWS01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-48702-7</subfield><subfield code="l">FWS02</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-48702-7</subfield><subfield code="l">HTW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-48702-7</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-48702-7</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-48702-7</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-48702-7</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-48702-7</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-48702-7</subfield><subfield code="l">UEI01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-48702-7</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046835057 |
illustrated | Not Illustrated |
index_date | 2024-07-03T15:06:02Z |
indexdate | 2024-08-01T15:29:12Z |
institution | BVB |
isbn | 9783030487027 |
issn | 1660-8046 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032244143 |
oclc_num | 1193290622 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-898 DE-BY-UBR DE-861 DE-188 DE-523 DE-863 DE-BY-FWS DE-20 DE-862 DE-BY-FWS DE-92 DE-824 DE-384 DE-703 DE-739 DE-634 |
owner_facet | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-898 DE-BY-UBR DE-861 DE-188 DE-523 DE-863 DE-BY-FWS DE-20 DE-862 DE-BY-FWS DE-92 DE-824 DE-384 DE-703 DE-739 DE-634 |
physical | 1 Online-Ressource (XIII, 178 p. 51 illus., 45 illus. in color) |
psigel | ZDB-2-SMA ZDB-2-SMA_2020_Fremddaten |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Springer International Publishing Birkhäuser |
record_format | marc |
series2 | Frontiers in Mathematics |
spellingShingle | Ezquerro Fernandez, José Antonio Hernández Verón, Miguel Ángel Mild Differentiability Conditions for Newton's Method in Banach Spaces Operator Theory Numerical Analysis Integral Equations Ordinary Differential Equations Partial Differential Equations Operator theory Numerical analysis Integral equations Differential equations Partial differential equations |
title | Mild Differentiability Conditions for Newton's Method in Banach Spaces |
title_auth | Mild Differentiability Conditions for Newton's Method in Banach Spaces |
title_exact_search | Mild Differentiability Conditions for Newton's Method in Banach Spaces |
title_exact_search_txtP | Mild Differentiability Conditions for Newton's Method in Banach Spaces |
title_full | Mild Differentiability Conditions for Newton's Method in Banach Spaces by José Antonio Ezquerro Fernandez, Miguel Ángel Hernández Verón |
title_fullStr | Mild Differentiability Conditions for Newton's Method in Banach Spaces by José Antonio Ezquerro Fernandez, Miguel Ángel Hernández Verón |
title_full_unstemmed | Mild Differentiability Conditions for Newton's Method in Banach Spaces by José Antonio Ezquerro Fernandez, Miguel Ángel Hernández Verón |
title_short | Mild Differentiability Conditions for Newton's Method in Banach Spaces |
title_sort | mild differentiability conditions for newton s method in banach spaces |
topic | Operator Theory Numerical Analysis Integral Equations Ordinary Differential Equations Partial Differential Equations Operator theory Numerical analysis Integral equations Differential equations Partial differential equations |
topic_facet | Operator Theory Numerical Analysis Integral Equations Ordinary Differential Equations Partial Differential Equations Operator theory Numerical analysis Integral equations Differential equations Partial differential equations |
url | https://doi.org/10.1007/978-3-030-48702-7 |
work_keys_str_mv | AT ezquerrofernandezjoseantonio milddifferentiabilityconditionsfornewtonsmethodinbanachspaces AT hernandezveronmiguelangel milddifferentiabilityconditionsfornewtonsmethodinbanachspaces |