Strongly asymptotically optimal methods for the pathwise global approximation of the stochastic differential equations with coefficients of super-linear growth:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Buch |
Sprache: | English |
Veröffentlicht: |
Passau
2020
|
Schlagworte: | |
Online-Zugang: | Volltext Volltext Inhaltsverzeichnis |
Beschreibung: | ii, 116 Seiten |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV046829259 | ||
003 | DE-604 | ||
005 | 20200911 | ||
007 | t | ||
008 | 200729s2020 m||| 00||| eng d | ||
035 | |a (OCoLC)1193295643 | ||
035 | |a (DE-599)BVBBV046829259 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-473 |a DE-703 |a DE-1051 |a DE-824 |a DE-29 |a DE-12 |a DE-91 |a DE-19 |a DE-1049 |a DE-92 |a DE-739 |a DE-898 |a DE-355 |a DE-706 |a DE-20 |a DE-1102 |a DE-860 |a DE-2174 | ||
084 | |a SK 820 |0 (DE-625)143258: |2 rvk | ||
100 | 1 | |a Hatzesberger, Simon |d ca. 20./21. Jhd. |e Verfasser |0 (DE-588)1217503269 |4 aut | |
245 | 1 | 0 | |a Strongly asymptotically optimal methods for the pathwise global approximation of the stochastic differential equations with coefficients of super-linear growth |c Simon Hatzesberger |
264 | 1 | |a Passau |c 2020 | |
300 | |a ii, 116 Seiten | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
502 | |b Dissertation |c Universität Passau |d 2020 | ||
650 | 0 | 7 | |a Stochastische Differentialgleichung |0 (DE-588)4057621-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Approximation |0 (DE-588)4002498-2 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Stochastische Differentialgleichung |0 (DE-588)4057621-8 |D s |
689 | 0 | 1 | |a Approximation |0 (DE-588)4002498-2 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |o URN: urn:nbn:de:bvb:739-opus4-8100 |
856 | 4 | 1 | |u https://opus4.kobv.de/opus4-uni-passau/frontdoor/index/index/docId/810 |z kostenfrei |3 Volltext |
856 | 4 | 1 | |u https://nbn-resolving.org/urn:nbn:de:bvb:739-opus4-8100 |x Resolving-System |z kostenfrei |3 Volltext |
856 | 4 | 2 | |m Digitalisierung UB Passau - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032238456&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
912 | |a ebook | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032238456 |
Datensatz im Suchindex
_version_ | 1804181648956194816 |
---|---|
adam_text | 1 Contents 1 Introduction 1.1 Problem Description and Main Results........................................................ 1.2 Notations....................................................................................................... 1.3 Setting............................................................................................................. 1 1 4 6 2 Strong Approximations of Stochastic Differential Equations and Strong Asymptotic Optimality 9 2.1 Strong Approximations ............................................................................ 9 2.2 The Classes of Adaptive and of EquidistantApproximations...................... 12 2.3 Strong Asymptotic Optimality .................................................................... 13 3 Strongly Asymptotically Optimal Approximations with respect to the Supremum Error 17 3.1 Assumptions .................................................................................................. 18 3.2 Literature Review ............................................................................................ 20 3.3 The Equidistant and theAdaptive Tamed Euler Schemes .............................27 3.3.1 The Continuous-time Tamed Euler Schemes....................................... 28 3.3.2 The Equidistant Tamed Euler Schemes................................................28 3.3.3 The Adaptive Tamed Euler Schemes...................................................29 3.4 Main Results..................................................................................................... 30 3.5 Numerical
Experiment...................................................................................... 33 3.6 Proofs................................................................................................................. 36 3.6.1 Preliminaries......................................................................................... 36 3.6.2 Asymptotic Lower Bounds.....................................................................40 3.6.3 Asymptotic Upper Bounds .......................................................... 47 4 Strongly Asymptotically Optimal Approximations with respect to the Lp Error 53 4.1 Assumptions ................................................................................................. 54 4.2 Literature Review ......................................................................................... 56 4.3 The Equidistant and theAdaptive Tamed Milstein Schemes..........................66 4.3.1 The Continuous-time Tamed MilsteinSchemes.................................. 66 4.3.2 The Equidistant Tamed Milstein Schemes..........................................67
ii 4.4 4.5 4.6 4.7 4.3.3 The Adaptive Tamed Milstein Schemes ............................................ 68 Main Results................................................................................................. 69 Problems and Solution Approaches inthe Case p փ q.................................. 72 Numerical Experiment................................................................................... 74 Proofs.................................................................................................................77 4.7.1 Preliminaries...................................................................................... 78 4.7.2 Asymptotic Lower Bounds................................................................. 85 4.7.3 Asymptotic Upper Bounds ..................................................................90 5 Final Remarks and Outlook 95 A On some Properties ofSpecific Stochastic Processes 97 A.l Brownian Bridges.......................................................................................... 97 A.2 The Solution Process...................................................................................... 101 A.3 The Continuous-time Tamed Euler Schemes................................................ 103 A.4 The Continuous-time Tamed MilsteinSchemes............................................107 В Auxiliary Results 109 List of Figures 111 Bibliography 113
|
adam_txt |
1 Contents 1 Introduction 1.1 Problem Description and Main Results. 1.2 Notations. 1.3 Setting. 1 1 4 6 2 Strong Approximations of Stochastic Differential Equations and Strong Asymptotic Optimality 9 2.1 Strong Approximations . 9 2.2 The Classes of Adaptive and of EquidistantApproximations. 12 2.3 Strong Asymptotic Optimality . 13 3 Strongly Asymptotically Optimal Approximations with respect to the Supremum Error 17 3.1 Assumptions . 18 3.2 Literature Review . 20 3.3 The Equidistant and theAdaptive Tamed Euler Schemes .27 3.3.1 The Continuous-time Tamed Euler Schemes. 28 3.3.2 The Equidistant Tamed Euler Schemes.28 3.3.3 The Adaptive Tamed Euler Schemes.29 3.4 Main Results. 30 3.5 Numerical
Experiment. 33 3.6 Proofs. 36 3.6.1 Preliminaries. 36 3.6.2 Asymptotic Lower Bounds.40 3.6.3 Asymptotic Upper Bounds . 47 4 Strongly Asymptotically Optimal Approximations with respect to the Lp Error 53 4.1 Assumptions . 54 4.2 Literature Review . 56 4.3 The Equidistant and theAdaptive Tamed Milstein Schemes.66 4.3.1 The Continuous-time Tamed MilsteinSchemes. 66 4.3.2 The Equidistant Tamed Milstein Schemes.67
ii 4.4 4.5 4.6 4.7 4.3.3 The Adaptive Tamed Milstein Schemes . 68 Main Results. 69 Problems and Solution Approaches inthe Case p փ q. 72 Numerical Experiment. 74 Proofs.77 4.7.1 Preliminaries. 78 4.7.2 Asymptotic Lower Bounds. 85 4.7.3 Asymptotic Upper Bounds .90 5 Final Remarks and Outlook 95 A On some Properties ofSpecific Stochastic Processes 97 A.l Brownian Bridges. 97 A.2 The Solution Process. 101 A.3 The Continuous-time Tamed Euler Schemes. 103 A.4 The Continuous-time Tamed MilsteinSchemes.107 В Auxiliary Results 109 List of Figures 111 Bibliography 113 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Hatzesberger, Simon ca. 20./21. Jhd |
author_GND | (DE-588)1217503269 |
author_facet | Hatzesberger, Simon ca. 20./21. Jhd |
author_role | aut |
author_sort | Hatzesberger, Simon ca. 20./21. Jhd |
author_variant | s h sh |
building | Verbundindex |
bvnumber | BV046829259 |
classification_rvk | SK 820 |
collection | ebook |
ctrlnum | (OCoLC)1193295643 (DE-599)BVBBV046829259 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Thesis Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02021nam a2200397 c 4500</leader><controlfield tag="001">BV046829259</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200911 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">200729s2020 m||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1193295643</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046829259</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-1051</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-1049</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-1102</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-2174</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hatzesberger, Simon</subfield><subfield code="d">ca. 20./21. Jhd.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1217503269</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Strongly asymptotically optimal methods for the pathwise global approximation of the stochastic differential equations with coefficients of super-linear growth</subfield><subfield code="c">Simon Hatzesberger</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Passau</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">ii, 116 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">Universität Passau</subfield><subfield code="d">2020</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastische Differentialgleichung</subfield><subfield code="0">(DE-588)4057621-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Approximation</subfield><subfield code="0">(DE-588)4002498-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stochastische Differentialgleichung</subfield><subfield code="0">(DE-588)4057621-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Approximation</subfield><subfield code="0">(DE-588)4002498-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="o">URN: urn:nbn:de:bvb:739-opus4-8100</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://opus4.kobv.de/opus4-uni-passau/frontdoor/index/index/docId/810</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://nbn-resolving.org/urn:nbn:de:bvb:739-opus4-8100</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032238456&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ebook</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032238456</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV046829259 |
illustrated | Not Illustrated |
index_date | 2024-07-03T15:04:20Z |
indexdate | 2024-07-10T08:55:00Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032238456 |
oclc_num | 1193295643 |
open_access_boolean | 1 |
owner | DE-384 DE-473 DE-BY-UBG DE-703 DE-1051 DE-824 DE-29 DE-12 DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-1049 DE-92 DE-739 DE-898 DE-BY-UBR DE-355 DE-BY-UBR DE-706 DE-20 DE-1102 DE-860 DE-2174 |
owner_facet | DE-384 DE-473 DE-BY-UBG DE-703 DE-1051 DE-824 DE-29 DE-12 DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-1049 DE-92 DE-739 DE-898 DE-BY-UBR DE-355 DE-BY-UBR DE-706 DE-20 DE-1102 DE-860 DE-2174 |
physical | ii, 116 Seiten |
psigel | ebook |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
record_format | marc |
spelling | Hatzesberger, Simon ca. 20./21. Jhd. Verfasser (DE-588)1217503269 aut Strongly asymptotically optimal methods for the pathwise global approximation of the stochastic differential equations with coefficients of super-linear growth Simon Hatzesberger Passau 2020 ii, 116 Seiten txt rdacontent n rdamedia nc rdacarrier Dissertation Universität Passau 2020 Stochastische Differentialgleichung (DE-588)4057621-8 gnd rswk-swf Approximation (DE-588)4002498-2 gnd rswk-swf (DE-588)4113937-9 Hochschulschrift gnd-content Stochastische Differentialgleichung (DE-588)4057621-8 s Approximation (DE-588)4002498-2 s DE-604 Erscheint auch als Online-Ausgabe URN: urn:nbn:de:bvb:739-opus4-8100 https://opus4.kobv.de/opus4-uni-passau/frontdoor/index/index/docId/810 kostenfrei Volltext https://nbn-resolving.org/urn:nbn:de:bvb:739-opus4-8100 Resolving-System kostenfrei Volltext Digitalisierung UB Passau - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032238456&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Hatzesberger, Simon ca. 20./21. Jhd Strongly asymptotically optimal methods for the pathwise global approximation of the stochastic differential equations with coefficients of super-linear growth Stochastische Differentialgleichung (DE-588)4057621-8 gnd Approximation (DE-588)4002498-2 gnd |
subject_GND | (DE-588)4057621-8 (DE-588)4002498-2 (DE-588)4113937-9 |
title | Strongly asymptotically optimal methods for the pathwise global approximation of the stochastic differential equations with coefficients of super-linear growth |
title_auth | Strongly asymptotically optimal methods for the pathwise global approximation of the stochastic differential equations with coefficients of super-linear growth |
title_exact_search | Strongly asymptotically optimal methods for the pathwise global approximation of the stochastic differential equations with coefficients of super-linear growth |
title_exact_search_txtP | Strongly asymptotically optimal methods for the pathwise global approximation of the stochastic differential equations with coefficients of super-linear growth |
title_full | Strongly asymptotically optimal methods for the pathwise global approximation of the stochastic differential equations with coefficients of super-linear growth Simon Hatzesberger |
title_fullStr | Strongly asymptotically optimal methods for the pathwise global approximation of the stochastic differential equations with coefficients of super-linear growth Simon Hatzesberger |
title_full_unstemmed | Strongly asymptotically optimal methods for the pathwise global approximation of the stochastic differential equations with coefficients of super-linear growth Simon Hatzesberger |
title_short | Strongly asymptotically optimal methods for the pathwise global approximation of the stochastic differential equations with coefficients of super-linear growth |
title_sort | strongly asymptotically optimal methods for the pathwise global approximation of the stochastic differential equations with coefficients of super linear growth |
topic | Stochastische Differentialgleichung (DE-588)4057621-8 gnd Approximation (DE-588)4002498-2 gnd |
topic_facet | Stochastische Differentialgleichung Approximation Hochschulschrift |
url | https://opus4.kobv.de/opus4-uni-passau/frontdoor/index/index/docId/810 https://nbn-resolving.org/urn:nbn:de:bvb:739-opus4-8100 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032238456&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT hatzesbergersimon stronglyasymptoticallyoptimalmethodsforthepathwiseglobalapproximationofthestochasticdifferentialequationswithcoefficientsofsuperlineargrowth |