New complex analytic methods in the study of non-orientable minimal surfaces in Rn:
The aim of this work is to adapt the complex analytic methods originating in modern Oka theory to the study of non-orientable conformal minimal surfaces in for any . These methods, which we develop essentially from the first principles, enable us to prove that the space of conformal minimal immersio...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Providence, RI
American Mathematical Society
March 2020
|
Schriftenreihe: | Memoirs of the American Mathematical Society
volume 264, number 1283 (sixth of 6 numbers) |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Zusammenfassung: | The aim of this work is to adapt the complex analytic methods originating in modern Oka theory to the study of non-orientable conformal minimal surfaces in for any . These methods, which we develop essentially from the first principles, enable us to prove that the space of conformal minimal immersions of a given bordered non-orientable surface to is a real analytic Banach manifold (see Theorem 1.1), obtain approximation results of Runge-Mergelyan type for conformal minimal immersions from non-orientable surfaces (see Theorem 1.2 and Corollary 1.3), and show general position theorems for non-orientable conformal minimal surfaces in (see Theorem 1.4). We also give the first known example of a properly embedded non-orientable minimal surface in ; a Möbius strip (see Example 6.1).All our new tools mentioned above apply to non-orientable minimal surfaces endowed with a fixed choice of a conformal structure. This enables us to obtain significant new applications to the global theory of non-orientable minimal surfaces. In particular, we construct proper non-orientable conformal minimal surfaces in with any given conformal structure (see Theorem 1.6 (i)), complete non-orientable minimal surfaces in with arbitrary conformal type whose generalized Gauss map is nondegenerate and omits hyperplanes of in general position (see Theorem 1.6 (iii)), complete non-orientable minimal surfaces bounded by Jordan curves (see Theorem 1.5), and complete proper non-orientable minimal surfaces normalized by bordered surfaces in -convex domains of (see Theorem 1.7). |
Beschreibung: | Literaturverzeichnis: Seite 73-77 |
Beschreibung: | vi, 77 Seiten Illustrationen |
ISBN: | 9781470441616 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV046828580 | ||
003 | DE-604 | ||
005 | 20200902 | ||
007 | t | ||
008 | 200729s2020 a||| |||| 00||| eng d | ||
020 | |a 9781470441616 |c Broschur |9 978-1-4704-4161-6 | ||
035 | |a (OCoLC)1193159619 | ||
035 | |a (DE-599)BVBBV046828580 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-29T |a DE-355 |a DE-83 |a DE-11 | ||
084 | |a SI 130 |0 (DE-625)143082: |2 rvk | ||
084 | |a 32E30 |2 MSC | ||
084 | |a 32H02 |2 MSC | ||
084 | |a 31.52 |2 bkl | ||
084 | |a 53A10 |2 MSC | ||
084 | |a 32B15 |2 MSC | ||
100 | 1 | |a Alarcón, Antonio |0 (DE-588)1213305063 |4 aut | |
245 | 1 | 0 | |a New complex analytic methods in the study of non-orientable minimal surfaces in Rn |c Antonio Alarcón, Franc Forstnerič, Francisco J. López |
264 | 1 | |a Providence, RI |b American Mathematical Society |c March 2020 | |
300 | |a vi, 77 Seiten |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Memoirs of the American Mathematical Society |v volume 264, number 1283 (sixth of 6 numbers) | |
500 | |a Literaturverzeichnis: Seite 73-77 | ||
520 | |a The aim of this work is to adapt the complex analytic methods originating in modern Oka theory to the study of non-orientable conformal minimal surfaces in for any . These methods, which we develop essentially from the first principles, enable us to prove that the space of conformal minimal immersions of a given bordered non-orientable surface to is a real analytic Banach manifold (see Theorem 1.1), obtain approximation results of Runge-Mergelyan type for conformal minimal immersions from non-orientable surfaces (see Theorem 1.2 and Corollary 1.3), and show general position theorems for non-orientable conformal minimal surfaces in (see Theorem 1.4). We also give the first known example of a properly embedded non-orientable minimal surface in ; a Möbius strip (see Example 6.1).All our new tools mentioned above apply to non-orientable minimal surfaces endowed with a fixed choice of a conformal structure. This enables us to obtain significant new applications to the global theory of non-orientable minimal surfaces. In particular, we construct proper non-orientable conformal minimal surfaces in with any given conformal structure (see Theorem 1.6 (i)), complete non-orientable minimal surfaces in with arbitrary conformal type whose generalized Gauss map is nondegenerate and omits hyperplanes of in general position (see Theorem 1.6 (iii)), complete non-orientable minimal surfaces bounded by Jordan curves (see Theorem 1.5), and complete proper non-orientable minimal surfaces normalized by bordered surfaces in -convex domains of (see Theorem 1.7). | ||
650 | 0 | 7 | |a Holomorphie |0 (DE-588)4160484-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Affiner Raum |0 (DE-588)4141574-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialgeometrie |0 (DE-588)4012248-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Differentialgeometrie |0 (DE-588)4012248-7 |D s |
689 | 0 | 1 | |a Affiner Raum |0 (DE-588)4141574-7 |D s |
689 | 0 | 2 | |a Holomorphie |0 (DE-588)4160484-2 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Forstnerič, Franc |d 1958- |0 (DE-588)1016469241 |4 aut | |
700 | 1 | |a López, Francisco J. |0 (DE-588)1213305365 |4 aut | |
830 | 0 | |a Memoirs of the American Mathematical Society |v volume 264, number 1283 (sixth of 6 numbers) |w (DE-604)BV008000141 |9 1283 | |
856 | 4 | 2 | |m HEBIS Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032237786&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-032237786 |
Datensatz im Suchindex
_version_ | 1804181647852044288 |
---|---|
adam_text | American Mathematical Society
Number 1283
New Complex Analytic Methods in
the Study of Non-Orientable Minimal
Surfaces in Rn
Antonio Alarcön
Franc Forstneric
Francisco J Lopez
ULB Darmstadt
20396504
Universitäts- und
Landesbibliothek
Darmstadt
March 2020 • Volume 264 • Number 1283 (sixth of 6 numbers)
V
I • •
• ••a a a r American
A MATHEMATICAL
*-• 1 UVLJ SOCIETY
Contents
Chapter 1 Introduction 1
11A summary of the main results 1
1 2 Basic notions of minimal surface theory 3
1 3 Approximation and general position theorems 4
1 4 Complete non-orientable minimal surfaces with Jordan boundaries 7
1 5 Proper non-orientable minimal surfaces in domains in Rn 9
Chapter 2 Preliminaries 13
2 1 Conformal structures on surfaces 13
2 2 3-invariant functions and 1-forms Spaces of functions and maps 14
2 3 Homology basis and period map 16
2 4 Conformal minimal immersions of non-orientable surfaces 20
2 5 Notation 23
Chapter 3 Gluing 3-invariant sprays and applications 25
3 1 3-invariant sprays 25
3 2 Gluing 3-invariant sprays on 3-invariant Cartan pairs 27
3 3 3-invariant period dominating sprays 30
3 4 Banach manifold structure of the space CMI5 (A/) 31
3 5 Basic approximation results 35
3 6 The Riemann-Hilbert method for non-orientable minimal surfaces 37
Chapter 4 Approximation theorems for non-orientable minimal surfaces 41
41A Mergelyan approximation theorem 42
42A Mergelyan theorem with fixed components 48
Chapter 5 A general position theorem for non-orientable minimal surfaces 55
Chapter 6 Applications 59
6 1 Proper non-orientable minimal surfaces in Rn 59
6 2 Complete non-orientable minimal surfaces with fixed components 63
6 3 Complete non-orientable minimal surfaces with Jordan boundaries 68
6 4 Proper non-orientable minimal surfaces in p-convex domains 69
Bibliography 73
|
adam_txt |
American Mathematical Society
Number 1283
New Complex Analytic Methods in
the Study of Non-Orientable Minimal
Surfaces in Rn
Antonio Alarcön
Franc Forstneric
Francisco J Lopez
ULB Darmstadt
20396504
Universitäts- und
Landesbibliothek
Darmstadt
March 2020 • Volume 264 • Number 1283 (sixth of 6 numbers)
V
I • •
• ••a a a r' American
A \ MATHEMATICAL
*-• 1 UVLJ SOCIETY
Contents
Chapter 1 Introduction 1
11A summary of the main results 1
1 2 Basic notions of minimal surface theory 3
1 3 Approximation and general position theorems 4
1 4 Complete non-orientable minimal surfaces with Jordan boundaries 7
1 5 Proper non-orientable minimal surfaces in domains in Rn 9
Chapter 2 Preliminaries 13
2 1 Conformal structures on surfaces 13
2 2 3-invariant functions and 1-forms Spaces of functions and maps 14
2 3 Homology basis and period map 16
2 4 Conformal minimal immersions of non-orientable surfaces 20
2 5 Notation 23
Chapter 3 Gluing 3-invariant sprays and applications 25
3 1 3-invariant sprays 25
3 2 Gluing 3-invariant sprays on 3-invariant Cartan pairs 27
3 3 3-invariant period dominating sprays 30
3 4 Banach manifold structure of the space CMI5 (A/) 31
3 5 Basic approximation results 35
3 6 The Riemann-Hilbert method for non-orientable minimal surfaces 37
Chapter 4 Approximation theorems for non-orientable minimal surfaces 41
41A Mergelyan approximation theorem 42
42A Mergelyan theorem with fixed components 48
Chapter 5 A general position theorem for non-orientable minimal surfaces 55
Chapter 6 Applications 59
6 1 Proper non-orientable minimal surfaces in Rn 59
6 2 Complete non-orientable minimal surfaces with fixed components 63
6 3 Complete non-orientable minimal surfaces with Jordan boundaries 68
6 4 Proper non-orientable minimal surfaces in p-convex domains 69
Bibliography 73 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Alarcón, Antonio Forstnerič, Franc 1958- López, Francisco J. |
author_GND | (DE-588)1213305063 (DE-588)1016469241 (DE-588)1213305365 |
author_facet | Alarcón, Antonio Forstnerič, Franc 1958- López, Francisco J. |
author_role | aut aut aut |
author_sort | Alarcón, Antonio |
author_variant | a a aa f f ff f j l fj fjl |
building | Verbundindex |
bvnumber | BV046828580 |
classification_rvk | SI 130 |
ctrlnum | (OCoLC)1193159619 (DE-599)BVBBV046828580 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03685nam a2200493 cb4500</leader><controlfield tag="001">BV046828580</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200902 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">200729s2020 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781470441616</subfield><subfield code="c">Broschur</subfield><subfield code="9">978-1-4704-4161-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1193159619</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046828580</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 130</subfield><subfield code="0">(DE-625)143082:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">32E30</subfield><subfield code="2">MSC</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">32H02</subfield><subfield code="2">MSC</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.52</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53A10</subfield><subfield code="2">MSC</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">32B15</subfield><subfield code="2">MSC</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Alarcón, Antonio</subfield><subfield code="0">(DE-588)1213305063</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">New complex analytic methods in the study of non-orientable minimal surfaces in Rn</subfield><subfield code="c">Antonio Alarcón, Franc Forstnerič, Francisco J. López</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, RI</subfield><subfield code="b">American Mathematical Society</subfield><subfield code="c">March 2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">vi, 77 Seiten</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Memoirs of the American Mathematical Society</subfield><subfield code="v">volume 264, number 1283 (sixth of 6 numbers)</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverzeichnis: Seite 73-77</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The aim of this work is to adapt the complex analytic methods originating in modern Oka theory to the study of non-orientable conformal minimal surfaces in for any . These methods, which we develop essentially from the first principles, enable us to prove that the space of conformal minimal immersions of a given bordered non-orientable surface to is a real analytic Banach manifold (see Theorem 1.1), obtain approximation results of Runge-Mergelyan type for conformal minimal immersions from non-orientable surfaces (see Theorem 1.2 and Corollary 1.3), and show general position theorems for non-orientable conformal minimal surfaces in (see Theorem 1.4). We also give the first known example of a properly embedded non-orientable minimal surface in ; a Möbius strip (see Example 6.1).All our new tools mentioned above apply to non-orientable minimal surfaces endowed with a fixed choice of a conformal structure. This enables us to obtain significant new applications to the global theory of non-orientable minimal surfaces. In particular, we construct proper non-orientable conformal minimal surfaces in with any given conformal structure (see Theorem 1.6 (i)), complete non-orientable minimal surfaces in with arbitrary conformal type whose generalized Gauss map is nondegenerate and omits hyperplanes of in general position (see Theorem 1.6 (iii)), complete non-orientable minimal surfaces bounded by Jordan curves (see Theorem 1.5), and complete proper non-orientable minimal surfaces normalized by bordered surfaces in -convex domains of (see Theorem 1.7).</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Holomorphie</subfield><subfield code="0">(DE-588)4160484-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Affiner Raum</subfield><subfield code="0">(DE-588)4141574-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Affiner Raum</subfield><subfield code="0">(DE-588)4141574-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Holomorphie</subfield><subfield code="0">(DE-588)4160484-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Forstnerič, Franc</subfield><subfield code="d">1958-</subfield><subfield code="0">(DE-588)1016469241</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">López, Francisco J.</subfield><subfield code="0">(DE-588)1213305365</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Memoirs of the American Mathematical Society</subfield><subfield code="v">volume 264, number 1283 (sixth of 6 numbers)</subfield><subfield code="w">(DE-604)BV008000141</subfield><subfield code="9">1283</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032237786&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032237786</subfield></datafield></record></collection> |
id | DE-604.BV046828580 |
illustrated | Illustrated |
index_date | 2024-07-03T15:04:05Z |
indexdate | 2024-07-10T08:54:59Z |
institution | BVB |
isbn | 9781470441616 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032237786 |
oclc_num | 1193159619 |
open_access_boolean | |
owner | DE-29T DE-355 DE-BY-UBR DE-83 DE-11 |
owner_facet | DE-29T DE-355 DE-BY-UBR DE-83 DE-11 |
physical | vi, 77 Seiten Illustrationen |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | American Mathematical Society |
record_format | marc |
series | Memoirs of the American Mathematical Society |
series2 | Memoirs of the American Mathematical Society |
spelling | Alarcón, Antonio (DE-588)1213305063 aut New complex analytic methods in the study of non-orientable minimal surfaces in Rn Antonio Alarcón, Franc Forstnerič, Francisco J. López Providence, RI American Mathematical Society March 2020 vi, 77 Seiten Illustrationen txt rdacontent n rdamedia nc rdacarrier Memoirs of the American Mathematical Society volume 264, number 1283 (sixth of 6 numbers) Literaturverzeichnis: Seite 73-77 The aim of this work is to adapt the complex analytic methods originating in modern Oka theory to the study of non-orientable conformal minimal surfaces in for any . These methods, which we develop essentially from the first principles, enable us to prove that the space of conformal minimal immersions of a given bordered non-orientable surface to is a real analytic Banach manifold (see Theorem 1.1), obtain approximation results of Runge-Mergelyan type for conformal minimal immersions from non-orientable surfaces (see Theorem 1.2 and Corollary 1.3), and show general position theorems for non-orientable conformal minimal surfaces in (see Theorem 1.4). We also give the first known example of a properly embedded non-orientable minimal surface in ; a Möbius strip (see Example 6.1).All our new tools mentioned above apply to non-orientable minimal surfaces endowed with a fixed choice of a conformal structure. This enables us to obtain significant new applications to the global theory of non-orientable minimal surfaces. In particular, we construct proper non-orientable conformal minimal surfaces in with any given conformal structure (see Theorem 1.6 (i)), complete non-orientable minimal surfaces in with arbitrary conformal type whose generalized Gauss map is nondegenerate and omits hyperplanes of in general position (see Theorem 1.6 (iii)), complete non-orientable minimal surfaces bounded by Jordan curves (see Theorem 1.5), and complete proper non-orientable minimal surfaces normalized by bordered surfaces in -convex domains of (see Theorem 1.7). Holomorphie (DE-588)4160484-2 gnd rswk-swf Affiner Raum (DE-588)4141574-7 gnd rswk-swf Differentialgeometrie (DE-588)4012248-7 gnd rswk-swf Differentialgeometrie (DE-588)4012248-7 s Affiner Raum (DE-588)4141574-7 s Holomorphie (DE-588)4160484-2 s DE-604 Forstnerič, Franc 1958- (DE-588)1016469241 aut López, Francisco J. (DE-588)1213305365 aut Memoirs of the American Mathematical Society volume 264, number 1283 (sixth of 6 numbers) (DE-604)BV008000141 1283 HEBIS Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032237786&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Alarcón, Antonio Forstnerič, Franc 1958- López, Francisco J. New complex analytic methods in the study of non-orientable minimal surfaces in Rn Memoirs of the American Mathematical Society Holomorphie (DE-588)4160484-2 gnd Affiner Raum (DE-588)4141574-7 gnd Differentialgeometrie (DE-588)4012248-7 gnd |
subject_GND | (DE-588)4160484-2 (DE-588)4141574-7 (DE-588)4012248-7 |
title | New complex analytic methods in the study of non-orientable minimal surfaces in Rn |
title_auth | New complex analytic methods in the study of non-orientable minimal surfaces in Rn |
title_exact_search | New complex analytic methods in the study of non-orientable minimal surfaces in Rn |
title_exact_search_txtP | New complex analytic methods in the study of non-orientable minimal surfaces in Rn |
title_full | New complex analytic methods in the study of non-orientable minimal surfaces in Rn Antonio Alarcón, Franc Forstnerič, Francisco J. López |
title_fullStr | New complex analytic methods in the study of non-orientable minimal surfaces in Rn Antonio Alarcón, Franc Forstnerič, Francisco J. López |
title_full_unstemmed | New complex analytic methods in the study of non-orientable minimal surfaces in Rn Antonio Alarcón, Franc Forstnerič, Francisco J. López |
title_short | New complex analytic methods in the study of non-orientable minimal surfaces in Rn |
title_sort | new complex analytic methods in the study of non orientable minimal surfaces in rn |
topic | Holomorphie (DE-588)4160484-2 gnd Affiner Raum (DE-588)4141574-7 gnd Differentialgeometrie (DE-588)4012248-7 gnd |
topic_facet | Holomorphie Affiner Raum Differentialgeometrie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032237786&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV008000141 |
work_keys_str_mv | AT alarconantonio newcomplexanalyticmethodsinthestudyofnonorientableminimalsurfacesinrn AT forstnericfranc newcomplexanalyticmethodsinthestudyofnonorientableminimalsurfacesinrn AT lopezfranciscoj newcomplexanalyticmethodsinthestudyofnonorientableminimalsurfacesinrn |