Salomon Maimon's Theory of Invention: Scientific Genius, Analysis and Euclidean Geometry
How can we invent new certain knowledge in a methodical manner? This question stands at the heart of Salomon Maimon's theory of invention. Chikurel argues that Maimon's contribution to the ars inveniendi tradition lies in the methods of invention which he prescribes for mathematics. Influe...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston
De Gruyter
[2020]
|
Schlagworte: | |
Online-Zugang: | FAB01 FAW01 FHA01 FKE01 FLA01 UBG01 UPA01 FCO01 Volltext Volltext |
Zusammenfassung: | How can we invent new certain knowledge in a methodical manner? This question stands at the heart of Salomon Maimon's theory of invention. Chikurel argues that Maimon's contribution to the ars inveniendi tradition lies in the methods of invention which he prescribes for mathematics. Influenced by Proclus' commentary on Elements, these methods are applied on examples taken from Euclid's Elements and Data. Centering around methodical invention and scientific genius, Maimon's philosophy is unique in an era glorifying the artistic genius, known as Geniezeit. Invention, primarily defined as constructing syllogisms, has implications on the notion of being given in intuition as well as in symbolic cognition. Chikurel introduces Maimon's notion of analysis in the broader sense, grounded not only on the principle of contradiction but on intuition as well. In philosophy, ampliative analysis is based on Maimon's logical term of analysis of the object, a term that has yet to be discussed in Maimonian scholarship. Following its introduction, a new version of the question quid juris? arises. In mathematics, Chikurel demonstrates how this conception of analysis originates from practices of Greek geometrical analysis |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed 23. Jun 2020) |
Beschreibung: | 1 online resource (X, 168 pages) |
ISBN: | 9783110691351 |
DOI: | 10.1515/9783110691351 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV046828036 | ||
003 | DE-604 | ||
005 | 20200810 | ||
007 | cr|uuu---uuuuu | ||
008 | 200729s2020 |||| o||u| ||||||eng d | ||
020 | |a 9783110691351 |9 978-3-11-069135-1 | ||
024 | 7 | |a 10.1515/9783110691351 |2 doi | |
035 | |a (ZDB-23-DGG)9783110691351 | ||
035 | |a (OCoLC)1193280816 | ||
035 | |a (DE-599)BVBBV046828036 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-Aug4 |a DE-859 |a DE-860 |a DE-473 |a DE-739 |a DE-1043 |a DE-858 | ||
084 | |a CD 1400 |0 (DE-625)17727: |2 rvk | ||
100 | 1 | |a Chikurel, Idit |e Verfasser |4 aut | |
245 | 1 | 0 | |a Salomon Maimon's Theory of Invention |b Scientific Genius, Analysis and Euclidean Geometry |c Idit Chikurel |
264 | 1 | |a Berlin ; Boston |b De Gruyter |c [2020] | |
264 | 4 | |c © 2020 | |
300 | |a 1 online resource (X, 168 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed 23. Jun 2020) | ||
520 | |a How can we invent new certain knowledge in a methodical manner? This question stands at the heart of Salomon Maimon's theory of invention. Chikurel argues that Maimon's contribution to the ars inveniendi tradition lies in the methods of invention which he prescribes for mathematics. Influenced by Proclus' commentary on Elements, these methods are applied on examples taken from Euclid's Elements and Data. Centering around methodical invention and scientific genius, Maimon's philosophy is unique in an era glorifying the artistic genius, known as Geniezeit. Invention, primarily defined as constructing syllogisms, has implications on the notion of being given in intuition as well as in symbolic cognition. Chikurel introduces Maimon's notion of analysis in the broader sense, grounded not only on the principle of contradiction but on intuition as well. In philosophy, ampliative analysis is based on Maimon's logical term of analysis of the object, a term that has yet to be discussed in Maimonian scholarship. Following its introduction, a new version of the question quid juris? arises. In mathematics, Chikurel demonstrates how this conception of analysis originates from practices of Greek geometrical analysis | ||
546 | |a In English | ||
600 | 1 | 7 | |a Maimon, Salomon |d 1753-1800 |0 (DE-588)11857647X |2 gnd |9 rswk-swf |
650 | 4 | |a Analyse | |
650 | 4 | |a Erfindung | |
650 | 4 | |a Euclidean Geometry | |
650 | 4 | |a Euklidische Geometrie | |
650 | 4 | |a Salomon Maimon | |
650 | 4 | |a analysis | |
650 | 4 | |a invention | |
650 | 7 | |a PHILOSOPHY / History & Surveys / Modern |2 bisacsh | |
650 | 0 | 7 | |a Euklidische Geometrie |0 (DE-588)4137555-5 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Maimon, Salomon |d 1753-1800 |0 (DE-588)11857647X |D p |
689 | 0 | 1 | |a Euklidische Geometrie |0 (DE-588)4137555-5 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783110691337 |
856 | 4 | 0 | |u https://doi.org/10.1515/9783110691351 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
856 | 4 | 0 | |u https://www.degruyter.com/isbn/9783110691351 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032236251 | ||
966 | e | |u https://doi.org/10.1515/9783110691351 |l FAB01 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110691351 |l FAW01 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110691351 |l FHA01 |p ZDB-23-DGG |q FHA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110691351 |l FKE01 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110691351 |l FLA01 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110691351 |l UBG01 |p ZDB-23-DGG |q UBG_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110691351 |l UPA01 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110691351 |l FCO01 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181646911471616 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Chikurel, Idit |
author_facet | Chikurel, Idit |
author_role | aut |
author_sort | Chikurel, Idit |
author_variant | i c ic |
building | Verbundindex |
bvnumber | BV046828036 |
classification_rvk | CD 1400 |
collection | ZDB-23-DGG |
ctrlnum | (ZDB-23-DGG)9783110691351 (OCoLC)1193280816 (DE-599)BVBBV046828036 |
discipline | Philosophie |
discipline_str_mv | Philosophie |
doi_str_mv | 10.1515/9783110691351 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04159nmm a2200649zc 4500</leader><controlfield tag="001">BV046828036</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200810 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200729s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110691351</subfield><subfield code="9">978-3-11-069135-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110691351</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9783110691351</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1193280816</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046828036</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-858</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CD 1400</subfield><subfield code="0">(DE-625)17727:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chikurel, Idit</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Salomon Maimon's Theory of Invention</subfield><subfield code="b">Scientific Genius, Analysis and Euclidean Geometry</subfield><subfield code="c">Idit Chikurel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Boston</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (X, 168 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed 23. Jun 2020)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">How can we invent new certain knowledge in a methodical manner? This question stands at the heart of Salomon Maimon's theory of invention. Chikurel argues that Maimon's contribution to the ars inveniendi tradition lies in the methods of invention which he prescribes for mathematics. Influenced by Proclus' commentary on Elements, these methods are applied on examples taken from Euclid's Elements and Data. Centering around methodical invention and scientific genius, Maimon's philosophy is unique in an era glorifying the artistic genius, known as Geniezeit. Invention, primarily defined as constructing syllogisms, has implications on the notion of being given in intuition as well as in symbolic cognition. Chikurel introduces Maimon's notion of analysis in the broader sense, grounded not only on the principle of contradiction but on intuition as well. In philosophy, ampliative analysis is based on Maimon's logical term of analysis of the object, a term that has yet to be discussed in Maimonian scholarship. Following its introduction, a new version of the question quid juris? arises. In mathematics, Chikurel demonstrates how this conception of analysis originates from practices of Greek geometrical analysis</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="600" ind1="1" ind2="7"><subfield code="a">Maimon, Salomon</subfield><subfield code="d">1753-1800</subfield><subfield code="0">(DE-588)11857647X</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analyse</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Erfindung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Euclidean Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Euklidische Geometrie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Salomon Maimon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">invention</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">PHILOSOPHY / History & Surveys / Modern</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Euklidische Geometrie</subfield><subfield code="0">(DE-588)4137555-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maimon, Salomon</subfield><subfield code="d">1753-1800</subfield><subfield code="0">(DE-588)11857647X</subfield><subfield code="D">p</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Euklidische Geometrie</subfield><subfield code="0">(DE-588)4137555-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783110691337</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9783110691351</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.degruyter.com/isbn/9783110691351</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032236251</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110691351</subfield><subfield code="l">FAB01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110691351</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110691351</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FHA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110691351</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110691351</subfield><subfield code="l">FLA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110691351</subfield><subfield code="l">UBG01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UBG_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110691351</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110691351</subfield><subfield code="l">FCO01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV046828036 |
illustrated | Not Illustrated |
index_date | 2024-07-03T15:03:57Z |
indexdate | 2024-07-10T08:54:58Z |
institution | BVB |
isbn | 9783110691351 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032236251 |
oclc_num | 1193280816 |
open_access_boolean | |
owner | DE-1046 DE-Aug4 DE-859 DE-860 DE-473 DE-BY-UBG DE-739 DE-1043 DE-858 |
owner_facet | DE-1046 DE-Aug4 DE-859 DE-860 DE-473 DE-BY-UBG DE-739 DE-1043 DE-858 |
physical | 1 online resource (X, 168 pages) |
psigel | ZDB-23-DGG ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FHA_PDA_DGG ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DGG UBG_PDA_DGG ZDB-23-DGG UPA_PDA_DGG ZDB-23-DGG FCO_PDA_DGG |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | De Gruyter |
record_format | marc |
spelling | Chikurel, Idit Verfasser aut Salomon Maimon's Theory of Invention Scientific Genius, Analysis and Euclidean Geometry Idit Chikurel Berlin ; Boston De Gruyter [2020] © 2020 1 online resource (X, 168 pages) txt rdacontent c rdamedia cr rdacarrier Description based on online resource; title from PDF title page (publisher's Web site, viewed 23. Jun 2020) How can we invent new certain knowledge in a methodical manner? This question stands at the heart of Salomon Maimon's theory of invention. Chikurel argues that Maimon's contribution to the ars inveniendi tradition lies in the methods of invention which he prescribes for mathematics. Influenced by Proclus' commentary on Elements, these methods are applied on examples taken from Euclid's Elements and Data. Centering around methodical invention and scientific genius, Maimon's philosophy is unique in an era glorifying the artistic genius, known as Geniezeit. Invention, primarily defined as constructing syllogisms, has implications on the notion of being given in intuition as well as in symbolic cognition. Chikurel introduces Maimon's notion of analysis in the broader sense, grounded not only on the principle of contradiction but on intuition as well. In philosophy, ampliative analysis is based on Maimon's logical term of analysis of the object, a term that has yet to be discussed in Maimonian scholarship. Following its introduction, a new version of the question quid juris? arises. In mathematics, Chikurel demonstrates how this conception of analysis originates from practices of Greek geometrical analysis In English Maimon, Salomon 1753-1800 (DE-588)11857647X gnd rswk-swf Analyse Erfindung Euclidean Geometry Euklidische Geometrie Salomon Maimon analysis invention PHILOSOPHY / History & Surveys / Modern bisacsh Euklidische Geometrie (DE-588)4137555-5 gnd rswk-swf (DE-588)4113937-9 Hochschulschrift gnd-content Maimon, Salomon 1753-1800 (DE-588)11857647X p Euklidische Geometrie (DE-588)4137555-5 s DE-604 Erscheint auch als Druck-Ausgabe 9783110691337 https://doi.org/10.1515/9783110691351 Verlag URL des Erstveröffentlichers Volltext https://www.degruyter.com/isbn/9783110691351 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Chikurel, Idit Salomon Maimon's Theory of Invention Scientific Genius, Analysis and Euclidean Geometry Maimon, Salomon 1753-1800 (DE-588)11857647X gnd Analyse Erfindung Euclidean Geometry Euklidische Geometrie Salomon Maimon analysis invention PHILOSOPHY / History & Surveys / Modern bisacsh Euklidische Geometrie (DE-588)4137555-5 gnd |
subject_GND | (DE-588)11857647X (DE-588)4137555-5 (DE-588)4113937-9 |
title | Salomon Maimon's Theory of Invention Scientific Genius, Analysis and Euclidean Geometry |
title_auth | Salomon Maimon's Theory of Invention Scientific Genius, Analysis and Euclidean Geometry |
title_exact_search | Salomon Maimon's Theory of Invention Scientific Genius, Analysis and Euclidean Geometry |
title_exact_search_txtP | Salomon Maimon's Theory of Invention Scientific Genius, Analysis and Euclidean Geometry |
title_full | Salomon Maimon's Theory of Invention Scientific Genius, Analysis and Euclidean Geometry Idit Chikurel |
title_fullStr | Salomon Maimon's Theory of Invention Scientific Genius, Analysis and Euclidean Geometry Idit Chikurel |
title_full_unstemmed | Salomon Maimon's Theory of Invention Scientific Genius, Analysis and Euclidean Geometry Idit Chikurel |
title_short | Salomon Maimon's Theory of Invention |
title_sort | salomon maimon s theory of invention scientific genius analysis and euclidean geometry |
title_sub | Scientific Genius, Analysis and Euclidean Geometry |
topic | Maimon, Salomon 1753-1800 (DE-588)11857647X gnd Analyse Erfindung Euclidean Geometry Euklidische Geometrie Salomon Maimon analysis invention PHILOSOPHY / History & Surveys / Modern bisacsh Euklidische Geometrie (DE-588)4137555-5 gnd |
topic_facet | Maimon, Salomon 1753-1800 Analyse Erfindung Euclidean Geometry Euklidische Geometrie Salomon Maimon analysis invention PHILOSOPHY / History & Surveys / Modern Hochschulschrift |
url | https://doi.org/10.1515/9783110691351 https://www.degruyter.com/isbn/9783110691351 |
work_keys_str_mv | AT chikurelidit salomonmaimonstheoryofinventionscientificgeniusanalysisandeuclideangeometry |