An introduction to the geometrical analysis of vector fields: with applications to maximum principles and Lie groups
"This book provides the reader with a gentle path through the multifaceted theory of vector fields, starting from the definitions and the basic properties of vector fields and flows, and ending with some of their countless applications, in the framework of what is nowadays called Geometrical An...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Publishing Company Pte Limited
2019
|
Schlagworte: | |
Online-Zugang: | UBY01 Volltext |
Zusammenfassung: | "This book provides the reader with a gentle path through the multifaceted theory of vector fields, starting from the definitions and the basic properties of vector fields and flows, and ending with some of their countless applications, in the framework of what is nowadays called Geometrical Analysis. Once the background material is established, the applications mainly deal with the following meaningful settings: 1. ODE theory; 2. Maximum Principles (weak, strong and propagation principles); 3.Lie groups (with an emphasis on the construction of Lie groups). This book also provides an introduction to the basic theory of Geometrical Analysis, with a new foundational presentation based on Ordinary Differential Equation techniques, in a unitary and self-contained way."-- |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | 1 online resource (452 pages) illustrations |
ISBN: | 9789813276628 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV046810889 | ||
003 | DE-604 | ||
005 | 20201102 | ||
007 | cr|uuu---uuuuu | ||
008 | 200716s2019 |||| o||u| ||||||eng d | ||
020 | |a 9789813276628 |9 978-981-3276-62-8 | ||
024 | 7 | |a 10.1142/11165 |2 doi | |
035 | |a (ZDB-124-WOP)00011165 | ||
035 | |a (OCoLC)1159227819 | ||
035 | |a (DE-599)BVBBV046810889 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-706 | ||
082 | 0 | |a 516/.182 | |
084 | |a SK 350 |0 (DE-625)143233: |2 rvk | ||
100 | 1 | |a Biagi, Stefano |4 aut | |
245 | 1 | 0 | |a An introduction to the geometrical analysis of vector fields |b with applications to maximum principles and Lie groups |c by Stefano Biagi, Andrea Bonfiglioli |
264 | 1 | |a Singapore |b World Scientific Publishing Company Pte Limited |c 2019 | |
300 | |a 1 online resource (452 pages) |b illustrations | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
520 | |a "This book provides the reader with a gentle path through the multifaceted theory of vector fields, starting from the definitions and the basic properties of vector fields and flows, and ending with some of their countless applications, in the framework of what is nowadays called Geometrical Analysis. Once the background material is established, the applications mainly deal with the following meaningful settings: 1. ODE theory; 2. Maximum Principles (weak, strong and propagation principles); 3.Lie groups (with an emphasis on the construction of Lie groups). This book also provides an introduction to the basic theory of Geometrical Analysis, with a new foundational presentation based on Ordinary Differential Equation techniques, in a unitary and self-contained way."-- | ||
650 | 4 | |a Vector fields | |
650 | 4 | |a Maximum principles (Mathematics) | |
650 | 4 | |a Lie groups | |
650 | 4 | |a Electronic books | |
650 | 0 | 7 | |a Geometrische Analysis |0 (DE-588)4156708-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Vektorfeld |0 (DE-588)4139571-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Geometrische Analysis |0 (DE-588)4156708-0 |D s |
689 | 0 | 1 | |a Vektorfeld |0 (DE-588)4139571-2 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Bonfiglioli, Andrea |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789813276611 |
856 | 4 | 0 | |u https://www.worldscientific.com/worldscibooks/10.1142/11165 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032219446 | ||
966 | e | |u https://www.worldscientific.com/worldscibooks/10.1142/11165 |l UBY01 |p ZDB-124-WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181616287809536 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Biagi, Stefano |
author_facet | Biagi, Stefano |
author_role | aut |
author_sort | Biagi, Stefano |
author_variant | s b sb |
building | Verbundindex |
bvnumber | BV046810889 |
classification_rvk | SK 350 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00011165 (OCoLC)1159227819 (DE-599)BVBBV046810889 |
dewey-full | 516/.182 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516/.182 |
dewey-search | 516/.182 |
dewey-sort | 3516 3182 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02659nmm a2200493zc 4500</leader><controlfield tag="001">BV046810889</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20201102 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200716s2019 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789813276628</subfield><subfield code="9">978-981-3276-62-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/11165</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00011165</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1159227819</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046810889</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516/.182</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Biagi, Stefano</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An introduction to the geometrical analysis of vector fields</subfield><subfield code="b">with applications to maximum principles and Lie groups</subfield><subfield code="c">by Stefano Biagi, Andrea Bonfiglioli</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Publishing Company Pte Limited</subfield><subfield code="c">2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (452 pages)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"This book provides the reader with a gentle path through the multifaceted theory of vector fields, starting from the definitions and the basic properties of vector fields and flows, and ending with some of their countless applications, in the framework of what is nowadays called Geometrical Analysis. Once the background material is established, the applications mainly deal with the following meaningful settings: 1. ODE theory; 2. Maximum Principles (weak, strong and propagation principles); 3.Lie groups (with an emphasis on the construction of Lie groups). This book also provides an introduction to the basic theory of Geometrical Analysis, with a new foundational presentation based on Ordinary Differential Equation techniques, in a unitary and self-contained way."--</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vector fields</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maximum principles (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic books</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrische Analysis</subfield><subfield code="0">(DE-588)4156708-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Vektorfeld</subfield><subfield code="0">(DE-588)4139571-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Geometrische Analysis</subfield><subfield code="0">(DE-588)4156708-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Vektorfeld</subfield><subfield code="0">(DE-588)4139571-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bonfiglioli, Andrea</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789813276611</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.worldscientific.com/worldscibooks/10.1142/11165</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032219446</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://www.worldscientific.com/worldscibooks/10.1142/11165</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046810889 |
illustrated | Illustrated |
index_date | 2024-07-03T14:58:51Z |
indexdate | 2024-07-10T08:54:29Z |
institution | BVB |
isbn | 9789813276628 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032219446 |
oclc_num | 1159227819 |
open_access_boolean | |
owner | DE-706 |
owner_facet | DE-706 |
physical | 1 online resource (452 pages) illustrations |
psigel | ZDB-124-WOP |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | World Scientific Publishing Company Pte Limited |
record_format | marc |
spelling | Biagi, Stefano aut An introduction to the geometrical analysis of vector fields with applications to maximum principles and Lie groups by Stefano Biagi, Andrea Bonfiglioli Singapore World Scientific Publishing Company Pte Limited 2019 1 online resource (452 pages) illustrations txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references and index "This book provides the reader with a gentle path through the multifaceted theory of vector fields, starting from the definitions and the basic properties of vector fields and flows, and ending with some of their countless applications, in the framework of what is nowadays called Geometrical Analysis. Once the background material is established, the applications mainly deal with the following meaningful settings: 1. ODE theory; 2. Maximum Principles (weak, strong and propagation principles); 3.Lie groups (with an emphasis on the construction of Lie groups). This book also provides an introduction to the basic theory of Geometrical Analysis, with a new foundational presentation based on Ordinary Differential Equation techniques, in a unitary and self-contained way."-- Vector fields Maximum principles (Mathematics) Lie groups Electronic books Geometrische Analysis (DE-588)4156708-0 gnd rswk-swf Vektorfeld (DE-588)4139571-2 gnd rswk-swf Geometrische Analysis (DE-588)4156708-0 s Vektorfeld (DE-588)4139571-2 s DE-604 Bonfiglioli, Andrea Sonstige oth Erscheint auch als Druck-Ausgabe 9789813276611 https://www.worldscientific.com/worldscibooks/10.1142/11165 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Biagi, Stefano An introduction to the geometrical analysis of vector fields with applications to maximum principles and Lie groups Vector fields Maximum principles (Mathematics) Lie groups Electronic books Geometrische Analysis (DE-588)4156708-0 gnd Vektorfeld (DE-588)4139571-2 gnd |
subject_GND | (DE-588)4156708-0 (DE-588)4139571-2 |
title | An introduction to the geometrical analysis of vector fields with applications to maximum principles and Lie groups |
title_auth | An introduction to the geometrical analysis of vector fields with applications to maximum principles and Lie groups |
title_exact_search | An introduction to the geometrical analysis of vector fields with applications to maximum principles and Lie groups |
title_exact_search_txtP | An introduction to the geometrical analysis of vector fields with applications to maximum principles and Lie groups |
title_full | An introduction to the geometrical analysis of vector fields with applications to maximum principles and Lie groups by Stefano Biagi, Andrea Bonfiglioli |
title_fullStr | An introduction to the geometrical analysis of vector fields with applications to maximum principles and Lie groups by Stefano Biagi, Andrea Bonfiglioli |
title_full_unstemmed | An introduction to the geometrical analysis of vector fields with applications to maximum principles and Lie groups by Stefano Biagi, Andrea Bonfiglioli |
title_short | An introduction to the geometrical analysis of vector fields |
title_sort | an introduction to the geometrical analysis of vector fields with applications to maximum principles and lie groups |
title_sub | with applications to maximum principles and Lie groups |
topic | Vector fields Maximum principles (Mathematics) Lie groups Electronic books Geometrische Analysis (DE-588)4156708-0 gnd Vektorfeld (DE-588)4139571-2 gnd |
topic_facet | Vector fields Maximum principles (Mathematics) Lie groups Electronic books Geometrische Analysis Vektorfeld |
url | https://www.worldscientific.com/worldscibooks/10.1142/11165 |
work_keys_str_mv | AT biagistefano anintroductiontothegeometricalanalysisofvectorfieldswithapplicationstomaximumprinciplesandliegroups AT bonfiglioliandrea anintroductiontothegeometricalanalysisofvectorfieldswithapplicationstomaximumprinciplesandliegroups |