Bayesian networks in fault diagnosis: practice and application
"Fault diagnosis is useful for technicians to detect, isolate, identify faults, and troubleshoot. Bayesian network (BN) is a probabilistic graphical model that effectively deals with various uncertainty problems. This model is increasingly utilized in fault diagnosis. This unique compendium pre...
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Publishing Company Pte Limited
2019
|
Schlagworte: | |
Online-Zugang: | UBY01 URL des Erstveröffentlichers |
Zusammenfassung: | "Fault diagnosis is useful for technicians to detect, isolate, identify faults, and troubleshoot. Bayesian network (BN) is a probabilistic graphical model that effectively deals with various uncertainty problems. This model is increasingly utilized in fault diagnosis. This unique compendium presents bibliographical review on the use of BNs in fault diagnosis in the last decades with focus on engineering systems. Subsequently, eleven important issues in BN-based fault diagnosis methodology, such as BN structure modeling, BN parameter modeling, BN inference, fault identification, validation, and verification are discussed in various cases. Researchers, professionals, academics and graduate students will better understand the theory and application, and benefit those who are keen to develop real BN-based fault diagnosis system."-- |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | 1 online resource (418 pages) illustrations (some color) |
ISBN: | 9789813271494 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV046810696 | ||
003 | DE-604 | ||
005 | 20201103 | ||
007 | cr|uuu---uuuuu | ||
008 | 200716s2019 |||| o||u| ||||||eng d | ||
020 | |a 9789813271494 |9 978-981-3271-49-4 | ||
024 | 7 | |a 10.1142/11021 |2 doi | |
035 | |a (ZDB-124-WOP)00011021 | ||
035 | |a (OCoLC)1100119000 | ||
035 | |a (DE-599)BVBBV046810696 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-706 | ||
082 | 0 | |a 519.542 | |
245 | 1 | 0 | |a Bayesian networks in fault diagnosis |b practice and application |c editors, Baoping Cai ... [and others] |
264 | 1 | |a Singapore |b World Scientific Publishing Company Pte Limited |c 2019 | |
300 | |a 1 online resource (418 pages) |b illustrations (some color) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
520 | |a "Fault diagnosis is useful for technicians to detect, isolate, identify faults, and troubleshoot. Bayesian network (BN) is a probabilistic graphical model that effectively deals with various uncertainty problems. This model is increasingly utilized in fault diagnosis. This unique compendium presents bibliographical review on the use of BNs in fault diagnosis in the last decades with focus on engineering systems. Subsequently, eleven important issues in BN-based fault diagnosis methodology, such as BN structure modeling, BN parameter modeling, BN inference, fault identification, validation, and verification are discussed in various cases. Researchers, professionals, academics and graduate students will better understand the theory and application, and benefit those who are keen to develop real BN-based fault diagnosis system."-- | ||
650 | 4 | |a Bayesian statistical decision theory / Data processing | |
650 | 4 | |a Fault location (Engineering) | |
650 | 4 | |a Neural networks (Computer science) | |
650 | 4 | |a Electronic books | |
700 | 1 | |a Cai, Baoping |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789813271487 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9813271485 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789813271876 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9813271876 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/11021 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032219260 | ||
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/11021 |l UBY01 |p ZDB-124-WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181615956459520 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
building | Verbundindex |
bvnumber | BV046810696 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00011021 (OCoLC)1100119000 (DE-599)BVBBV046810696 |
dewey-full | 519.542 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.542 |
dewey-search | 519.542 |
dewey-sort | 3519.542 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02571nmm a2200445zc 4500</leader><controlfield tag="001">BV046810696</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20201103 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200716s2019 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789813271494</subfield><subfield code="9">978-981-3271-49-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/11021</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00011021</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1100119000</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046810696</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.542</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bayesian networks in fault diagnosis</subfield><subfield code="b">practice and application</subfield><subfield code="c">editors, Baoping Cai ... [and others]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Publishing Company Pte Limited</subfield><subfield code="c">2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (418 pages)</subfield><subfield code="b">illustrations (some color)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"Fault diagnosis is useful for technicians to detect, isolate, identify faults, and troubleshoot. Bayesian network (BN) is a probabilistic graphical model that effectively deals with various uncertainty problems. This model is increasingly utilized in fault diagnosis. This unique compendium presents bibliographical review on the use of BNs in fault diagnosis in the last decades with focus on engineering systems. Subsequently, eleven important issues in BN-based fault diagnosis methodology, such as BN structure modeling, BN parameter modeling, BN inference, fault identification, validation, and verification are discussed in various cases. Researchers, professionals, academics and graduate students will better understand the theory and application, and benefit those who are keen to develop real BN-based fault diagnosis system."--</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bayesian statistical decision theory / Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fault location (Engineering)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural networks (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic books</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cai, Baoping</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789813271487</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9813271485</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789813271876</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9813271876</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/11021</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032219260</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/11021</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046810696 |
illustrated | Illustrated |
index_date | 2024-07-03T14:58:50Z |
indexdate | 2024-07-10T08:54:29Z |
institution | BVB |
isbn | 9789813271494 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032219260 |
oclc_num | 1100119000 |
open_access_boolean | |
owner | DE-706 |
owner_facet | DE-706 |
physical | 1 online resource (418 pages) illustrations (some color) |
psigel | ZDB-124-WOP |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | World Scientific Publishing Company Pte Limited |
record_format | marc |
spelling | Bayesian networks in fault diagnosis practice and application editors, Baoping Cai ... [and others] Singapore World Scientific Publishing Company Pte Limited 2019 1 online resource (418 pages) illustrations (some color) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references and index "Fault diagnosis is useful for technicians to detect, isolate, identify faults, and troubleshoot. Bayesian network (BN) is a probabilistic graphical model that effectively deals with various uncertainty problems. This model is increasingly utilized in fault diagnosis. This unique compendium presents bibliographical review on the use of BNs in fault diagnosis in the last decades with focus on engineering systems. Subsequently, eleven important issues in BN-based fault diagnosis methodology, such as BN structure modeling, BN parameter modeling, BN inference, fault identification, validation, and verification are discussed in various cases. Researchers, professionals, academics and graduate students will better understand the theory and application, and benefit those who are keen to develop real BN-based fault diagnosis system."-- Bayesian statistical decision theory / Data processing Fault location (Engineering) Neural networks (Computer science) Electronic books Cai, Baoping Sonstige oth Erscheint auch als Druck-Ausgabe 9789813271487 Erscheint auch als Druck-Ausgabe 9813271485 Erscheint auch als Druck-Ausgabe 9789813271876 Erscheint auch als Druck-Ausgabe 9813271876 http://www.worldscientific.com/worldscibooks/10.1142/11021 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Bayesian networks in fault diagnosis practice and application Bayesian statistical decision theory / Data processing Fault location (Engineering) Neural networks (Computer science) Electronic books |
title | Bayesian networks in fault diagnosis practice and application |
title_auth | Bayesian networks in fault diagnosis practice and application |
title_exact_search | Bayesian networks in fault diagnosis practice and application |
title_exact_search_txtP | Bayesian networks in fault diagnosis practice and application |
title_full | Bayesian networks in fault diagnosis practice and application editors, Baoping Cai ... [and others] |
title_fullStr | Bayesian networks in fault diagnosis practice and application editors, Baoping Cai ... [and others] |
title_full_unstemmed | Bayesian networks in fault diagnosis practice and application editors, Baoping Cai ... [and others] |
title_short | Bayesian networks in fault diagnosis |
title_sort | bayesian networks in fault diagnosis practice and application |
title_sub | practice and application |
topic | Bayesian statistical decision theory / Data processing Fault location (Engineering) Neural networks (Computer science) Electronic books |
topic_facet | Bayesian statistical decision theory / Data processing Fault location (Engineering) Neural networks (Computer science) Electronic books |
url | http://www.worldscientific.com/worldscibooks/10.1142/11021 |
work_keys_str_mv | AT caibaoping bayesiannetworksinfaultdiagnosispracticeandapplication |