Notes on the binomial transform: theory and table with appendix on stirling transform
"The binomial transform is a discrete transformation of one sequence into another with many interesting applications in combinatorics and analysis. This volume is helpful to researchers interested in enumerative combinatorics, special numbers, and classical analysis. A valuable reference, it ca...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Publishing Company Pte Limited
2018
|
Schlagworte: | |
Online-Zugang: | UBY01 URL des Erstveröffentlichers |
Zusammenfassung: | "The binomial transform is a discrete transformation of one sequence into another with many interesting applications in combinatorics and analysis. This volume is helpful to researchers interested in enumerative combinatorics, special numbers, and classical analysis. A valuable reference, it can also be used as lecture notes for a course in binomial identities, binomial transforms and Euler series transformations. The binomial transform leads to various combinatorial and analytical identities involving binomial coefficients. In particular, we present here new binomial identities for Bernoulli, Fibonacci, and harmonic numbers. Many interesting identities can be written as binomial transforms and vice versa. The volume consists of two parts. In the first part, we present the theory of the binomial transform for sequences with a sufficient prerequisite of classical numbers and polynomials. The first part provides theorems and tools which help to compute binomial transforms of different sequences and also to generate new binomial identities from the old. These theoretical tools (formulas and theorems) can also be used for summation of series and various numerical computations. In the second part, we have compiled a list of binomial transform formulas for easy reference. In the Appendix, we present the definition of the Stirling sequence transform and a short table of transformation formulas."-- |
Beschreibung: | Includes bibliographical references (pages 189-194) and index |
Beschreibung: | 1 online resource (206 pages) illustrations |
ISBN: | 9789813234987 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV046810102 | ||
003 | DE-604 | ||
005 | 20201104 | ||
007 | cr|uuu---uuuuu | ||
008 | 200716s2018 |||| o||u| ||||||eng d | ||
020 | |a 9789813234987 |9 978-981-3234-98-7 | ||
024 | 7 | |a 10.1142/10848 |2 doi | |
035 | |a (ZDB-124-WOP)00010848 | ||
035 | |a (OCoLC)1045420089 | ||
035 | |a (DE-599)BVBBV046810102 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-706 | ||
082 | 0 | |a 511.6 | |
100 | 1 | |a Boyadzhiev, Khristo N |4 aut | |
245 | 1 | 0 | |a Notes on the binomial transform |b theory and table with appendix on stirling transform |c Khristo N. Boyadzhiev |
264 | 1 | |a Singapore |b World Scientific Publishing Company Pte Limited |c 2018 | |
300 | |a 1 online resource (206 pages) |b illustrations | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references (pages 189-194) and index | ||
520 | |a "The binomial transform is a discrete transformation of one sequence into another with many interesting applications in combinatorics and analysis. This volume is helpful to researchers interested in enumerative combinatorics, special numbers, and classical analysis. A valuable reference, it can also be used as lecture notes for a course in binomial identities, binomial transforms and Euler series transformations. The binomial transform leads to various combinatorial and analytical identities involving binomial coefficients. In particular, we present here new binomial identities for Bernoulli, Fibonacci, and harmonic numbers. Many interesting identities can be written as binomial transforms and vice versa. The volume consists of two parts. In the first part, we present the theory of the binomial transform for sequences with a sufficient prerequisite of classical numbers and polynomials. The first part provides theorems and tools which help to compute binomial transforms of different sequences and also to generate new binomial identities from the old. These theoretical tools (formulas and theorems) can also be used for summation of series and various numerical computations. In the second part, we have compiled a list of binomial transform formulas for easy reference. In the Appendix, we present the definition of the Stirling sequence transform and a short table of transformation formulas."-- | ||
650 | 4 | |a Combinatorial analysis | |
650 | 4 | |a Binomial coefficients | |
650 | 4 | |a Electronic books | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789813234970 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/10848 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032218681 | ||
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/10848 |l UBY01 |p ZDB-124-WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181614885863424 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Boyadzhiev, Khristo N |
author_facet | Boyadzhiev, Khristo N |
author_role | aut |
author_sort | Boyadzhiev, Khristo N |
author_variant | k n b kn knb |
building | Verbundindex |
bvnumber | BV046810102 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00010848 (OCoLC)1045420089 (DE-599)BVBBV046810102 |
dewey-full | 511.6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.6 |
dewey-search | 511.6 |
dewey-sort | 3511.6 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02873nmm a2200397zc 4500</leader><controlfield tag="001">BV046810102</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20201104 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200716s2018 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789813234987</subfield><subfield code="9">978-981-3234-98-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/10848</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00010848</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1045420089</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046810102</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.6</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Boyadzhiev, Khristo N</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Notes on the binomial transform</subfield><subfield code="b">theory and table with appendix on stirling transform</subfield><subfield code="c">Khristo N. Boyadzhiev</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Publishing Company Pte Limited</subfield><subfield code="c">2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (206 pages)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 189-194) and index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"The binomial transform is a discrete transformation of one sequence into another with many interesting applications in combinatorics and analysis. This volume is helpful to researchers interested in enumerative combinatorics, special numbers, and classical analysis. A valuable reference, it can also be used as lecture notes for a course in binomial identities, binomial transforms and Euler series transformations. The binomial transform leads to various combinatorial and analytical identities involving binomial coefficients. In particular, we present here new binomial identities for Bernoulli, Fibonacci, and harmonic numbers. Many interesting identities can be written as binomial transforms and vice versa. The volume consists of two parts. In the first part, we present the theory of the binomial transform for sequences with a sufficient prerequisite of classical numbers and polynomials. The first part provides theorems and tools which help to compute binomial transforms of different sequences and also to generate new binomial identities from the old. These theoretical tools (formulas and theorems) can also be used for summation of series and various numerical computations. In the second part, we have compiled a list of binomial transform formulas for easy reference. In the Appendix, we present the definition of the Stirling sequence transform and a short table of transformation formulas."--</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorial analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Binomial coefficients</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic books</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789813234970</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/10848</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032218681</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/10848</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046810102 |
illustrated | Illustrated |
index_date | 2024-07-03T14:58:43Z |
indexdate | 2024-07-10T08:54:28Z |
institution | BVB |
isbn | 9789813234987 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032218681 |
oclc_num | 1045420089 |
open_access_boolean | |
owner | DE-706 |
owner_facet | DE-706 |
physical | 1 online resource (206 pages) illustrations |
psigel | ZDB-124-WOP |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | World Scientific Publishing Company Pte Limited |
record_format | marc |
spelling | Boyadzhiev, Khristo N aut Notes on the binomial transform theory and table with appendix on stirling transform Khristo N. Boyadzhiev Singapore World Scientific Publishing Company Pte Limited 2018 1 online resource (206 pages) illustrations txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references (pages 189-194) and index "The binomial transform is a discrete transformation of one sequence into another with many interesting applications in combinatorics and analysis. This volume is helpful to researchers interested in enumerative combinatorics, special numbers, and classical analysis. A valuable reference, it can also be used as lecture notes for a course in binomial identities, binomial transforms and Euler series transformations. The binomial transform leads to various combinatorial and analytical identities involving binomial coefficients. In particular, we present here new binomial identities for Bernoulli, Fibonacci, and harmonic numbers. Many interesting identities can be written as binomial transforms and vice versa. The volume consists of two parts. In the first part, we present the theory of the binomial transform for sequences with a sufficient prerequisite of classical numbers and polynomials. The first part provides theorems and tools which help to compute binomial transforms of different sequences and also to generate new binomial identities from the old. These theoretical tools (formulas and theorems) can also be used for summation of series and various numerical computations. In the second part, we have compiled a list of binomial transform formulas for easy reference. In the Appendix, we present the definition of the Stirling sequence transform and a short table of transformation formulas."-- Combinatorial analysis Binomial coefficients Electronic books Erscheint auch als Druck-Ausgabe 9789813234970 http://www.worldscientific.com/worldscibooks/10.1142/10848 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Boyadzhiev, Khristo N Notes on the binomial transform theory and table with appendix on stirling transform Combinatorial analysis Binomial coefficients Electronic books |
title | Notes on the binomial transform theory and table with appendix on stirling transform |
title_auth | Notes on the binomial transform theory and table with appendix on stirling transform |
title_exact_search | Notes on the binomial transform theory and table with appendix on stirling transform |
title_exact_search_txtP | Notes on the binomial transform theory and table with appendix on stirling transform |
title_full | Notes on the binomial transform theory and table with appendix on stirling transform Khristo N. Boyadzhiev |
title_fullStr | Notes on the binomial transform theory and table with appendix on stirling transform Khristo N. Boyadzhiev |
title_full_unstemmed | Notes on the binomial transform theory and table with appendix on stirling transform Khristo N. Boyadzhiev |
title_short | Notes on the binomial transform |
title_sort | notes on the binomial transform theory and table with appendix on stirling transform |
title_sub | theory and table with appendix on stirling transform |
topic | Combinatorial analysis Binomial coefficients Electronic books |
topic_facet | Combinatorial analysis Binomial coefficients Electronic books |
url | http://www.worldscientific.com/worldscibooks/10.1142/10848 |
work_keys_str_mv | AT boyadzhievkhriston notesonthebinomialtransformtheoryandtablewithappendixonstirlingtransform |