The geometry of spherical space form groups:
"This volume focuses on discussing the interplay between the analysis, as exemplified by the eta invariant and other spectral invariants, the number theory, as exemplified by the relevant Dedekind sums and Rademacher reciprocity, the algebraic topology, as exemplified by the equivariant bordism...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Publishing Company Pte Limited
2018
|
Ausgabe: | 2nd ed |
Schlagworte: | |
Online-Zugang: | UBY01 Volltext |
Zusammenfassung: | "This volume focuses on discussing the interplay between the analysis, as exemplified by the eta invariant and other spectral invariants, the number theory, as exemplified by the relevant Dedekind sums and Rademacher reciprocity, the algebraic topology, as exemplified by the equivariant bordism groups, K-theory groups, and connective K-theory groups, and the geometry of spherical space forms, as exemplified by the Smith homomorphism. These are used to study the existence of metrics of positive scalar curvature on spin manifolds of dimension at least 5 whose fundamental group is a spherical space form group. This volume is a completely rewritten revision of the first edition. The underlying organization is modified to provide a better organized and more coherent treatment of the material involved. In addition, approximately 100 pages have been added to study the existence of metrics of positive scalar curvature on spin manifolds of dimension at least 5 whose fundamental group is a spherical space form group. We have chosen to focus on the geometric aspect of the theory rather than more abstract algebraic constructions (like the assembly map) and to restrict our attention to spherical space forms rather than more general and more complicated geometrical examples to avoid losing contact with the fundamental geometry which is involved."-- |
Beschreibung: | Includes bibliographical references (pages 477-488) and index |
Beschreibung: | 1 online resource (508 pages) illustrations (some color) |
ISBN: | 9789813220799 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV046809777 | ||
003 | DE-604 | ||
005 | 20201104 | ||
007 | cr|uuu---uuuuu | ||
008 | 200716s2018 |||| o||u| ||||||eng d | ||
020 | |a 9789813220799 |9 978-981-3220-79-9 | ||
024 | 7 | |a 10.1142/10467 |2 doi | |
035 | |a (ZDB-124-WOP)00010467 | ||
035 | |a (OCoLC)1045420568 | ||
035 | |a (DE-599)BVBBV046809777 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-706 | ||
082 | 0 | |a 514/.23 | |
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
100 | 1 | |a Gilkey, Peter B |4 aut | |
245 | 1 | 0 | |a The geometry of spherical space form groups |c Peter B. Gilkey |
250 | |a 2nd ed | ||
264 | 1 | |a Singapore |b World Scientific Publishing Company Pte Limited |c 2018 | |
300 | |a 1 online resource (508 pages) |b illustrations (some color) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references (pages 477-488) and index | ||
520 | |a "This volume focuses on discussing the interplay between the analysis, as exemplified by the eta invariant and other spectral invariants, the number theory, as exemplified by the relevant Dedekind sums and Rademacher reciprocity, the algebraic topology, as exemplified by the equivariant bordism groups, K-theory groups, and connective K-theory groups, and the geometry of spherical space forms, as exemplified by the Smith homomorphism. These are used to study the existence of metrics of positive scalar curvature on spin manifolds of dimension at least 5 whose fundamental group is a spherical space form group. This volume is a completely rewritten revision of the first edition. The underlying organization is modified to provide a better organized and more coherent treatment of the material involved. In addition, approximately 100 pages have been added to study the existence of metrics of positive scalar curvature on spin manifolds of dimension at least 5 whose fundamental group is a spherical space form group. We have chosen to focus on the geometric aspect of the theory rather than more abstract algebraic constructions (like the assembly map) and to restrict our attention to spherical space forms rather than more general and more complicated geometrical examples to avoid losing contact with the fundamental geometry which is involved."-- | ||
650 | 4 | |a K-theory | |
650 | 4 | |a Topological transformation groups | |
650 | 4 | |a Electronic books | |
650 | 0 | 7 | |a Globale Analysis |0 (DE-588)4021285-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Indextheorem |0 (DE-588)4140055-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Sphärischer Raum |0 (DE-588)4228077-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Clifford-Kleinsche Raumform |0 (DE-588)4228083-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Sphärischer Raum |0 (DE-588)4228077-1 |D s |
689 | 0 | 1 | |a Clifford-Kleinsche Raumform |0 (DE-588)4228083-7 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Indextheorem |0 (DE-588)4140055-0 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Globale Analysis |0 (DE-588)4021285-3 |D s |
689 | 2 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789813220782 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/10467 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032218366 | ||
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/10467 |l UBY01 |p ZDB-124-WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181614321729536 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Gilkey, Peter B |
author_facet | Gilkey, Peter B |
author_role | aut |
author_sort | Gilkey, Peter B |
author_variant | p b g pb pbg |
building | Verbundindex |
bvnumber | BV046809777 |
classification_rvk | SK 370 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00010467 (OCoLC)1045420568 (DE-599)BVBBV046809777 |
dewey-full | 514/.23 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.23 |
dewey-search | 514/.23 |
dewey-sort | 3514 223 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
edition | 2nd ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03420nmm a2200553zc 4500</leader><controlfield tag="001">BV046809777</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20201104 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200716s2018 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789813220799</subfield><subfield code="9">978-981-3220-79-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/10467</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00010467</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1045420568</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046809777</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gilkey, Peter B</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The geometry of spherical space form groups</subfield><subfield code="c">Peter B. Gilkey</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2nd ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Publishing Company Pte Limited</subfield><subfield code="c">2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (508 pages)</subfield><subfield code="b">illustrations (some color)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 477-488) and index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"This volume focuses on discussing the interplay between the analysis, as exemplified by the eta invariant and other spectral invariants, the number theory, as exemplified by the relevant Dedekind sums and Rademacher reciprocity, the algebraic topology, as exemplified by the equivariant bordism groups, K-theory groups, and connective K-theory groups, and the geometry of spherical space forms, as exemplified by the Smith homomorphism. These are used to study the existence of metrics of positive scalar curvature on spin manifolds of dimension at least 5 whose fundamental group is a spherical space form group. This volume is a completely rewritten revision of the first edition. The underlying organization is modified to provide a better organized and more coherent treatment of the material involved. In addition, approximately 100 pages have been added to study the existence of metrics of positive scalar curvature on spin manifolds of dimension at least 5 whose fundamental group is a spherical space form group. We have chosen to focus on the geometric aspect of the theory rather than more abstract algebraic constructions (like the assembly map) and to restrict our attention to spherical space forms rather than more general and more complicated geometrical examples to avoid losing contact with the fundamental geometry which is involved."--</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">K-theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological transformation groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic books</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Globale Analysis</subfield><subfield code="0">(DE-588)4021285-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Indextheorem</subfield><subfield code="0">(DE-588)4140055-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sphärischer Raum</subfield><subfield code="0">(DE-588)4228077-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Clifford-Kleinsche Raumform</subfield><subfield code="0">(DE-588)4228083-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Sphärischer Raum</subfield><subfield code="0">(DE-588)4228077-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Clifford-Kleinsche Raumform</subfield><subfield code="0">(DE-588)4228083-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Indextheorem</subfield><subfield code="0">(DE-588)4140055-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Globale Analysis</subfield><subfield code="0">(DE-588)4021285-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789813220782</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/10467</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032218366</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/10467</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046809777 |
illustrated | Illustrated |
index_date | 2024-07-03T14:58:38Z |
indexdate | 2024-07-10T08:54:27Z |
institution | BVB |
isbn | 9789813220799 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032218366 |
oclc_num | 1045420568 |
open_access_boolean | |
owner | DE-706 |
owner_facet | DE-706 |
physical | 1 online resource (508 pages) illustrations (some color) |
psigel | ZDB-124-WOP |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | World Scientific Publishing Company Pte Limited |
record_format | marc |
spelling | Gilkey, Peter B aut The geometry of spherical space form groups Peter B. Gilkey 2nd ed Singapore World Scientific Publishing Company Pte Limited 2018 1 online resource (508 pages) illustrations (some color) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references (pages 477-488) and index "This volume focuses on discussing the interplay between the analysis, as exemplified by the eta invariant and other spectral invariants, the number theory, as exemplified by the relevant Dedekind sums and Rademacher reciprocity, the algebraic topology, as exemplified by the equivariant bordism groups, K-theory groups, and connective K-theory groups, and the geometry of spherical space forms, as exemplified by the Smith homomorphism. These are used to study the existence of metrics of positive scalar curvature on spin manifolds of dimension at least 5 whose fundamental group is a spherical space form group. This volume is a completely rewritten revision of the first edition. The underlying organization is modified to provide a better organized and more coherent treatment of the material involved. In addition, approximately 100 pages have been added to study the existence of metrics of positive scalar curvature on spin manifolds of dimension at least 5 whose fundamental group is a spherical space form group. We have chosen to focus on the geometric aspect of the theory rather than more abstract algebraic constructions (like the assembly map) and to restrict our attention to spherical space forms rather than more general and more complicated geometrical examples to avoid losing contact with the fundamental geometry which is involved."-- K-theory Topological transformation groups Electronic books Globale Analysis (DE-588)4021285-3 gnd rswk-swf Indextheorem (DE-588)4140055-0 gnd rswk-swf Sphärischer Raum (DE-588)4228077-1 gnd rswk-swf Clifford-Kleinsche Raumform (DE-588)4228083-7 gnd rswk-swf Sphärischer Raum (DE-588)4228077-1 s Clifford-Kleinsche Raumform (DE-588)4228083-7 s DE-604 Indextheorem (DE-588)4140055-0 s Globale Analysis (DE-588)4021285-3 s Erscheint auch als Druck-Ausgabe 9789813220782 http://www.worldscientific.com/worldscibooks/10.1142/10467 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Gilkey, Peter B The geometry of spherical space form groups K-theory Topological transformation groups Electronic books Globale Analysis (DE-588)4021285-3 gnd Indextheorem (DE-588)4140055-0 gnd Sphärischer Raum (DE-588)4228077-1 gnd Clifford-Kleinsche Raumform (DE-588)4228083-7 gnd |
subject_GND | (DE-588)4021285-3 (DE-588)4140055-0 (DE-588)4228077-1 (DE-588)4228083-7 |
title | The geometry of spherical space form groups |
title_auth | The geometry of spherical space form groups |
title_exact_search | The geometry of spherical space form groups |
title_exact_search_txtP | The geometry of spherical space form groups |
title_full | The geometry of spherical space form groups Peter B. Gilkey |
title_fullStr | The geometry of spherical space form groups Peter B. Gilkey |
title_full_unstemmed | The geometry of spherical space form groups Peter B. Gilkey |
title_short | The geometry of spherical space form groups |
title_sort | the geometry of spherical space form groups |
topic | K-theory Topological transformation groups Electronic books Globale Analysis (DE-588)4021285-3 gnd Indextheorem (DE-588)4140055-0 gnd Sphärischer Raum (DE-588)4228077-1 gnd Clifford-Kleinsche Raumform (DE-588)4228083-7 gnd |
topic_facet | K-theory Topological transformation groups Electronic books Globale Analysis Indextheorem Sphärischer Raum Clifford-Kleinsche Raumform |
url | http://www.worldscientific.com/worldscibooks/10.1142/10467 |
work_keys_str_mv | AT gilkeypeterb thegeometryofsphericalspaceformgroups |