Robust mixed model analysis:
"Mixed-effects models have found broad applications in various fields. As a result, the interest in learning and using these models is rapidly growing. On the other hand, some of these models, such as the linear mixed models and generalized linear mixed models, are highly parametric, involving...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Publishing Company Pte Limited
2019
|
Schlagworte: | |
Online-Zugang: | DE-706 Volltext |
Zusammenfassung: | "Mixed-effects models have found broad applications in various fields. As a result, the interest in learning and using these models is rapidly growing. On the other hand, some of these models, such as the linear mixed models and generalized linear mixed models, are highly parametric, involving distributional assumptions that may not be satisfied in real-life problems. Therefore, it is important, from a practical standpoint, that the methods of inference about these models are robust to violation of model assumptions. Fortunately, there is a full scale of methods currently available that are robust in certain aspects. Learning about these methods is essential for the practice of mixed-effects models. This research monograph provides a comprehensive account of methods of mixed model analysis that are robust in various aspects, such as to violation of model assumptions, or to outliers. It is suitable as a reference book for a practitioner who uses the mixed-effects models, and a researcher who studies these models. It can also be treated as a graduate text for a course on mixed-effects models and their applications."-- |
Beschreibung: | Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader |
Beschreibung: | 1 online resource (268 pages) illustrations |
ISBN: | 9789814733847 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV046808870 | ||
003 | DE-604 | ||
005 | 20201102 | ||
007 | cr|uuu---uuuuu | ||
008 | 200715s2019 xx a||| o|||| 00||| eng d | ||
020 | |a 9789814733847 |9 978-981-4733-84-7 | ||
024 | 7 | |a 10.1142/9888 |2 doi | |
035 | |a (ZDB-124-WOP)00009888 | ||
035 | |a (OCoLC)1190677263 | ||
035 | |a (DE-599)BVBBV046808870 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-706 | ||
084 | |a QH 233 |0 (DE-625)141548: |2 rvk | ||
084 | |a SK 840 |0 (DE-625)143261: |2 rvk | ||
100 | 1 | |a Jiang, Jiming |e Verfasser |4 aut | |
245 | 1 | 0 | |a Robust mixed model analysis |c Jiming Jiang |
264 | 1 | |a Singapore |b World Scientific Publishing Company Pte Limited |c 2019 | |
300 | |a 1 online resource (268 pages) |b illustrations | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader | ||
505 | 8 | |a Includes bibliographical references and index | |
520 | |a "Mixed-effects models have found broad applications in various fields. As a result, the interest in learning and using these models is rapidly growing. On the other hand, some of these models, such as the linear mixed models and generalized linear mixed models, are highly parametric, involving distributional assumptions that may not be satisfied in real-life problems. Therefore, it is important, from a practical standpoint, that the methods of inference about these models are robust to violation of model assumptions. Fortunately, there is a full scale of methods currently available that are robust in certain aspects. Learning about these methods is essential for the practice of mixed-effects models. This research monograph provides a comprehensive account of methods of mixed model analysis that are robust in various aspects, such as to violation of model assumptions, or to outliers. It is suitable as a reference book for a practitioner who uses the mixed-effects models, and a researcher who studies these models. It can also be treated as a graduate text for a course on mixed-effects models and their applications."-- | ||
650 | 4 | |a Multilevel models (Statistics) / Problems, exercises, etc | |
650 | 4 | |a Linear models (Statistics) / Problems, exercises, etc | |
650 | 4 | |a Mathematical models / Problems, exercises, etc | |
650 | 0 | 7 | |a Robuste Statistik |0 (DE-588)4451047-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lineares Modell |0 (DE-588)4134827-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gemischtes Modell |0 (DE-588)4156565-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Statistisches Modell |0 (DE-588)4121722-6 |2 gnd |9 rswk-swf |
653 | |a Electronic books | ||
689 | 0 | 0 | |a Gemischtes Modell |0 (DE-588)4156565-4 |D s |
689 | 0 | 1 | |a Lineares Modell |0 (DE-588)4134827-8 |D s |
689 | 0 | 2 | |a Robuste Statistik |0 (DE-588)4451047-0 |D s |
689 | 0 | 3 | |a Statistisches Modell |0 (DE-588)4121722-6 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789814733830 |
856 | 4 | 0 | |u https://www.worldscientific.com/worldscibooks/10.1142/9888 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-032217472 | |
966 | e | |u https://www.worldscientific.com/worldscibooks/10.1142/9888 |l DE-706 |p ZDB-124-WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1817681169726046208 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Jiang, Jiming |
author_facet | Jiang, Jiming |
author_role | aut |
author_sort | Jiang, Jiming |
author_variant | j j jj |
building | Verbundindex |
bvnumber | BV046808870 |
classification_rvk | QH 233 SK 840 |
collection | ZDB-124-WOP |
contents | Includes bibliographical references and index |
ctrlnum | (ZDB-124-WOP)00009888 (OCoLC)1190677263 (DE-599)BVBBV046808870 |
discipline | Mathematik Wirtschaftswissenschaften |
discipline_str_mv | Mathematik Wirtschaftswissenschaften |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV046808870</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20201102</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200715s2019 xx a||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814733847</subfield><subfield code="9">978-981-4733-84-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/9888</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00009888</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1190677263</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046808870</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 233</subfield><subfield code="0">(DE-625)141548:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 840</subfield><subfield code="0">(DE-625)143261:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jiang, Jiming</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Robust mixed model analysis</subfield><subfield code="c">Jiming Jiang</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Publishing Company Pte Limited</subfield><subfield code="c">2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (268 pages)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"Mixed-effects models have found broad applications in various fields. As a result, the interest in learning and using these models is rapidly growing. On the other hand, some of these models, such as the linear mixed models and generalized linear mixed models, are highly parametric, involving distributional assumptions that may not be satisfied in real-life problems. Therefore, it is important, from a practical standpoint, that the methods of inference about these models are robust to violation of model assumptions. Fortunately, there is a full scale of methods currently available that are robust in certain aspects. Learning about these methods is essential for the practice of mixed-effects models. This research monograph provides a comprehensive account of methods of mixed model analysis that are robust in various aspects, such as to violation of model assumptions, or to outliers. It is suitable as a reference book for a practitioner who uses the mixed-effects models, and a researcher who studies these models. It can also be treated as a graduate text for a course on mixed-effects models and their applications."--</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multilevel models (Statistics) / Problems, exercises, etc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear models (Statistics) / Problems, exercises, etc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical models / Problems, exercises, etc</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Robuste Statistik</subfield><subfield code="0">(DE-588)4451047-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineares Modell</subfield><subfield code="0">(DE-588)4134827-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gemischtes Modell</subfield><subfield code="0">(DE-588)4156565-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistisches Modell</subfield><subfield code="0">(DE-588)4121722-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Electronic books</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Gemischtes Modell</subfield><subfield code="0">(DE-588)4156565-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Lineares Modell</subfield><subfield code="0">(DE-588)4134827-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Robuste Statistik</subfield><subfield code="0">(DE-588)4451047-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Statistisches Modell</subfield><subfield code="0">(DE-588)4121722-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789814733830</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.worldscientific.com/worldscibooks/10.1142/9888</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032217472</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://www.worldscientific.com/worldscibooks/10.1142/9888</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046808870 |
illustrated | Illustrated |
index_date | 2024-07-03T14:58:22Z |
indexdate | 2024-12-06T09:04:06Z |
institution | BVB |
isbn | 9789814733847 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032217472 |
oclc_num | 1190677263 |
open_access_boolean | |
owner | DE-706 |
owner_facet | DE-706 |
physical | 1 online resource (268 pages) illustrations |
psigel | ZDB-124-WOP |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | World Scientific Publishing Company Pte Limited |
record_format | marc |
spelling | Jiang, Jiming Verfasser aut Robust mixed model analysis Jiming Jiang Singapore World Scientific Publishing Company Pte Limited 2019 1 online resource (268 pages) illustrations txt rdacontent c rdamedia cr rdacarrier Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader Includes bibliographical references and index "Mixed-effects models have found broad applications in various fields. As a result, the interest in learning and using these models is rapidly growing. On the other hand, some of these models, such as the linear mixed models and generalized linear mixed models, are highly parametric, involving distributional assumptions that may not be satisfied in real-life problems. Therefore, it is important, from a practical standpoint, that the methods of inference about these models are robust to violation of model assumptions. Fortunately, there is a full scale of methods currently available that are robust in certain aspects. Learning about these methods is essential for the practice of mixed-effects models. This research monograph provides a comprehensive account of methods of mixed model analysis that are robust in various aspects, such as to violation of model assumptions, or to outliers. It is suitable as a reference book for a practitioner who uses the mixed-effects models, and a researcher who studies these models. It can also be treated as a graduate text for a course on mixed-effects models and their applications."-- Multilevel models (Statistics) / Problems, exercises, etc Linear models (Statistics) / Problems, exercises, etc Mathematical models / Problems, exercises, etc Robuste Statistik (DE-588)4451047-0 gnd rswk-swf Lineares Modell (DE-588)4134827-8 gnd rswk-swf Gemischtes Modell (DE-588)4156565-4 gnd rswk-swf Statistisches Modell (DE-588)4121722-6 gnd rswk-swf Electronic books Gemischtes Modell (DE-588)4156565-4 s Lineares Modell (DE-588)4134827-8 s Robuste Statistik (DE-588)4451047-0 s Statistisches Modell (DE-588)4121722-6 s DE-604 Erscheint auch als Druck-Ausgabe 9789814733830 https://www.worldscientific.com/worldscibooks/10.1142/9888 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Jiang, Jiming Robust mixed model analysis Includes bibliographical references and index Multilevel models (Statistics) / Problems, exercises, etc Linear models (Statistics) / Problems, exercises, etc Mathematical models / Problems, exercises, etc Robuste Statistik (DE-588)4451047-0 gnd Lineares Modell (DE-588)4134827-8 gnd Gemischtes Modell (DE-588)4156565-4 gnd Statistisches Modell (DE-588)4121722-6 gnd |
subject_GND | (DE-588)4451047-0 (DE-588)4134827-8 (DE-588)4156565-4 (DE-588)4121722-6 |
title | Robust mixed model analysis |
title_auth | Robust mixed model analysis |
title_exact_search | Robust mixed model analysis |
title_exact_search_txtP | Robust mixed model analysis |
title_full | Robust mixed model analysis Jiming Jiang |
title_fullStr | Robust mixed model analysis Jiming Jiang |
title_full_unstemmed | Robust mixed model analysis Jiming Jiang |
title_short | Robust mixed model analysis |
title_sort | robust mixed model analysis |
topic | Multilevel models (Statistics) / Problems, exercises, etc Linear models (Statistics) / Problems, exercises, etc Mathematical models / Problems, exercises, etc Robuste Statistik (DE-588)4451047-0 gnd Lineares Modell (DE-588)4134827-8 gnd Gemischtes Modell (DE-588)4156565-4 gnd Statistisches Modell (DE-588)4121722-6 gnd |
topic_facet | Multilevel models (Statistics) / Problems, exercises, etc Linear models (Statistics) / Problems, exercises, etc Mathematical models / Problems, exercises, etc Robuste Statistik Lineares Modell Gemischtes Modell Statistisches Modell |
url | https://www.worldscientific.com/worldscibooks/10.1142/9888 |
work_keys_str_mv | AT jiangjiming robustmixedmodelanalysis |