Clinical herbal prescriptions: principles and practices of herbal formulations from deep learning health insurance herbal prescription big data
"Since AlphaGo defeated Ke Jie (who was then ranked 1st among all human players worldwide) May 2017, the art of Go (otherwise known as Weiqi) has entered a new era. Similarly, if we apply artificial intelligence (AI) to herbal medicine, the art of herbal prescription can experience a game chang...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Publishing Company Pte Limited
2019
|
Schlagworte: | |
Online-Zugang: | UBY01 URL des Erstveröffentlichers |
Zusammenfassung: | "Since AlphaGo defeated Ke Jie (who was then ranked 1st among all human players worldwide) May 2017, the art of Go (otherwise known as Weiqi) has entered a new era. Similarly, if we apply artificial intelligence (AI) to herbal medicine, the art of herbal prescription can experience a game change too. The author of this book has done exactly that, and via reverse engineering of the trained AI, the book details how one can compose herbal prescriptions from scratch. As artificial intelligence (AI) technologies outperform humans in such tasks as image/voice recognition and language translation, mastering of concentrated herbal extract granules (CHEG) prescription composition by AI is not a fiction, provided large quantities of high-quality CHEG prescription data are available. Thanks to the 340 million records of modern Western medicine diagnoses and corresponding CHEG prescriptions in the National Health Insurance Reimbursement Database (Taiwan) recorded in the decade between 2004 and 2013, the book is based on the results of applying state-of-the-art deep learning technologies to the CHEG prescription big data."-- |
Beschreibung: | Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader |
Beschreibung: | 1 online resource (520 pages) illustrations |
ISBN: | 9789813278257 9813278250 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV046808821 | ||
003 | DE-604 | ||
005 | 20201103 | ||
007 | cr|uuu---uuuuu | ||
008 | 200715s2019 |||| o||u| ||||||eng d | ||
020 | |a 9789813278257 |9 978-981-3278-25-7 | ||
020 | |a 9813278250 |9 981-3278-25-0 | ||
024 | 7 | |a 10.1142/11211 |2 doi | |
035 | |a (ZDB-124-WOP)00011211 | ||
035 | |a (OCoLC)1190674447 | ||
035 | |a (DE-599)BVBBV046808821 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-706 | ||
100 | 1 | |a Wang, Sun-Chong |e Verfasser |4 aut | |
245 | 1 | 0 | |a Clinical herbal prescriptions |b principles and practices of herbal formulations from deep learning health insurance herbal prescription big data |c Sun-Chong Wang |
264 | 1 | |a Singapore |b World Scientific Publishing Company Pte Limited |c 2019 | |
300 | |a 1 online resource (520 pages) |b illustrations | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader | ||
505 | 8 | |a Includes bibliographical references and index | |
520 | |a "Since AlphaGo defeated Ke Jie (who was then ranked 1st among all human players worldwide) May 2017, the art of Go (otherwise known as Weiqi) has entered a new era. Similarly, if we apply artificial intelligence (AI) to herbal medicine, the art of herbal prescription can experience a game change too. The author of this book has done exactly that, and via reverse engineering of the trained AI, the book details how one can compose herbal prescriptions from scratch. As artificial intelligence (AI) technologies outperform humans in such tasks as image/voice recognition and language translation, mastering of concentrated herbal extract granules (CHEG) prescription composition by AI is not a fiction, provided large quantities of high-quality CHEG prescription data are available. Thanks to the 340 million records of modern Western medicine diagnoses and corresponding CHEG prescriptions in the National Health Insurance Reimbursement Database (Taiwan) recorded in the decade between 2004 and 2013, the book is based on the results of applying state-of-the-art deep learning technologies to the CHEG prescription big data."-- | ||
650 | 4 | |a Herbs / Therapeutic use | |
653 | |a Electronic books | ||
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789813278240 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9813278242 |
856 | 4 | 0 | |u https://www.worldscientific.com/worldscibooks/10.1142/11211 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032217423 | ||
966 | e | |u https://www.worldscientific.com/worldscibooks/10.1142/11211 |l UBY01 |p ZDB-124-WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181612619890688 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Wang, Sun-Chong |
author_facet | Wang, Sun-Chong |
author_role | aut |
author_sort | Wang, Sun-Chong |
author_variant | s c w scw |
building | Verbundindex |
bvnumber | BV046808821 |
collection | ZDB-124-WOP |
contents | Includes bibliographical references and index |
ctrlnum | (ZDB-124-WOP)00011211 (OCoLC)1190674447 (DE-599)BVBBV046808821 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02768nmm a2200409zc 4500</leader><controlfield tag="001">BV046808821</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20201103 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200715s2019 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789813278257</subfield><subfield code="9">978-981-3278-25-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9813278250</subfield><subfield code="9">981-3278-25-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/11211</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00011211</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1190674447</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046808821</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Sun-Chong</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Clinical herbal prescriptions</subfield><subfield code="b">principles and practices of herbal formulations from deep learning health insurance herbal prescription big data</subfield><subfield code="c">Sun-Chong Wang</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Publishing Company Pte Limited</subfield><subfield code="c">2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (520 pages)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"Since AlphaGo defeated Ke Jie (who was then ranked 1st among all human players worldwide) May 2017, the art of Go (otherwise known as Weiqi) has entered a new era. Similarly, if we apply artificial intelligence (AI) to herbal medicine, the art of herbal prescription can experience a game change too. The author of this book has done exactly that, and via reverse engineering of the trained AI, the book details how one can compose herbal prescriptions from scratch. As artificial intelligence (AI) technologies outperform humans in such tasks as image/voice recognition and language translation, mastering of concentrated herbal extract granules (CHEG) prescription composition by AI is not a fiction, provided large quantities of high-quality CHEG prescription data are available. Thanks to the 340 million records of modern Western medicine diagnoses and corresponding CHEG prescriptions in the National Health Insurance Reimbursement Database (Taiwan) recorded in the decade between 2004 and 2013, the book is based on the results of applying state-of-the-art deep learning technologies to the CHEG prescription big data."--</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Herbs / Therapeutic use</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Electronic books</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789813278240</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9813278242</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.worldscientific.com/worldscibooks/10.1142/11211</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032217423</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://www.worldscientific.com/worldscibooks/10.1142/11211</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046808821 |
illustrated | Illustrated |
index_date | 2024-07-03T14:58:22Z |
indexdate | 2024-07-10T08:54:26Z |
institution | BVB |
isbn | 9789813278257 9813278250 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032217423 |
oclc_num | 1190674447 |
open_access_boolean | |
owner | DE-706 |
owner_facet | DE-706 |
physical | 1 online resource (520 pages) illustrations |
psigel | ZDB-124-WOP |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | World Scientific Publishing Company Pte Limited |
record_format | marc |
spelling | Wang, Sun-Chong Verfasser aut Clinical herbal prescriptions principles and practices of herbal formulations from deep learning health insurance herbal prescription big data Sun-Chong Wang Singapore World Scientific Publishing Company Pte Limited 2019 1 online resource (520 pages) illustrations txt rdacontent c rdamedia cr rdacarrier Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader Includes bibliographical references and index "Since AlphaGo defeated Ke Jie (who was then ranked 1st among all human players worldwide) May 2017, the art of Go (otherwise known as Weiqi) has entered a new era. Similarly, if we apply artificial intelligence (AI) to herbal medicine, the art of herbal prescription can experience a game change too. The author of this book has done exactly that, and via reverse engineering of the trained AI, the book details how one can compose herbal prescriptions from scratch. As artificial intelligence (AI) technologies outperform humans in such tasks as image/voice recognition and language translation, mastering of concentrated herbal extract granules (CHEG) prescription composition by AI is not a fiction, provided large quantities of high-quality CHEG prescription data are available. Thanks to the 340 million records of modern Western medicine diagnoses and corresponding CHEG prescriptions in the National Health Insurance Reimbursement Database (Taiwan) recorded in the decade between 2004 and 2013, the book is based on the results of applying state-of-the-art deep learning technologies to the CHEG prescription big data."-- Herbs / Therapeutic use Electronic books Erscheint auch als Druck-Ausgabe 9789813278240 Erscheint auch als Druck-Ausgabe 9813278242 https://www.worldscientific.com/worldscibooks/10.1142/11211 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Wang, Sun-Chong Clinical herbal prescriptions principles and practices of herbal formulations from deep learning health insurance herbal prescription big data Includes bibliographical references and index Herbs / Therapeutic use |
title | Clinical herbal prescriptions principles and practices of herbal formulations from deep learning health insurance herbal prescription big data |
title_auth | Clinical herbal prescriptions principles and practices of herbal formulations from deep learning health insurance herbal prescription big data |
title_exact_search | Clinical herbal prescriptions principles and practices of herbal formulations from deep learning health insurance herbal prescription big data |
title_exact_search_txtP | Clinical herbal prescriptions principles and practices of herbal formulations from deep learning health insurance herbal prescription big data |
title_full | Clinical herbal prescriptions principles and practices of herbal formulations from deep learning health insurance herbal prescription big data Sun-Chong Wang |
title_fullStr | Clinical herbal prescriptions principles and practices of herbal formulations from deep learning health insurance herbal prescription big data Sun-Chong Wang |
title_full_unstemmed | Clinical herbal prescriptions principles and practices of herbal formulations from deep learning health insurance herbal prescription big data Sun-Chong Wang |
title_short | Clinical herbal prescriptions |
title_sort | clinical herbal prescriptions principles and practices of herbal formulations from deep learning health insurance herbal prescription big data |
title_sub | principles and practices of herbal formulations from deep learning health insurance herbal prescription big data |
topic | Herbs / Therapeutic use |
topic_facet | Herbs / Therapeutic use |
url | https://www.worldscientific.com/worldscibooks/10.1142/11211 |
work_keys_str_mv | AT wangsunchong clinicalherbalprescriptionsprinciplesandpracticesofherbalformulationsfromdeeplearninghealthinsuranceherbalprescriptionbigdata |