Minimal surfaces: 2 Boundary regularity
Minimal surfaces I is an introduction to the field of minimal surfaces and apresentation of the classical theory as well as of parts of the modern development centered around boundary value problems. Part II deals with the boundary behaviour of minimal surfaces. Part I is particularly apt for studen...
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | English |
Veröffentlicht: |
Berlin
Springer-Verlag
[1992]
|
Schriftenreihe: | Grundlehren der mathematischen Wissenschaften
296 |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Minimal surfaces I is an introduction to the field of minimal surfaces and apresentation of the classical theory as well as of parts of the modern development centered around boundary value problems. Part II deals with the boundary behaviour of minimal surfaces. Part I is particularly apt for students who want to enter this interesting area of analysis and differential geometry which during the last 25 years of mathematical research has been very active and productive. Surveys of various subareas will lead the student to the current frontiers of knowledge and can alsobe useful to the researcher. The lecturer can easily base courses of one or two semesters on differential geometry on Vol. 1, as many topics are worked out in great detail. Numerous computer-generated illustrations of old and new minimal surfaces are included to support intuition and imagination. Part 2 leads the reader up to the regularity theory fornonlinear elliptic boundary value problems illustrated by a particular and fascinating topic. There is no comparably comprehensive treatment of the problem of boundary regularity of minimal surfaces available in book form. This long-awaited book is a timely and welcome addition to the mathematical literature. |
Beschreibung: | 1 Online-Ressource (XI, 422 Seiten) |
DOI: | 10.1007/978-3-662-08776-3 |
Internformat
MARC
LEADER | 00000nmm a2200000 cc4500 | ||
---|---|---|---|
001 | BV046796913 | ||
003 | DE-604 | ||
005 | 20240626 | ||
007 | cr|uuu---uuuuu | ||
008 | 200707s1992 |||| o||u| ||||||eng d | ||
024 | 7 | |a 10.1007/978-3-662-08776-3 |2 doi | |
035 | |a (ZDB-2-SMA)978-3-662-08776-3 | ||
035 | |a (ZDB-2-BAE)978-3-662-08776-3 | ||
035 | |a (OCoLC)1164649964 | ||
035 | |a (DE-599)BVBBV046796913 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 516.36 |2 23 | |
084 | |a MAT 000 |2 stub | ||
245 | 1 | 0 | |a Minimal surfaces |n 2 |p Boundary regularity |c Ulrich Dierkes, Stefan Hildebrand, Albrecht Küster, Ortwin Wohlrab |
264 | 1 | |a Berlin |b Springer-Verlag |c [1992] | |
300 | |a 1 Online-Ressource (XI, 422 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Grundlehren der mathematischen Wissenschaften |v 296 | |
490 | 0 | |a Grundlehren der mathematischen Wissenschaften | |
520 | 3 | |a Minimal surfaces I is an introduction to the field of minimal surfaces and apresentation of the classical theory as well as of parts of the modern development centered around boundary value problems. Part II deals with the boundary behaviour of minimal surfaces. Part I is particularly apt for students who want to enter this interesting area of analysis and differential geometry which during the last 25 years of mathematical research has been very active and productive. Surveys of various subareas will lead the student to the current frontiers of knowledge and can alsobe useful to the researcher. The lecturer can easily base courses of one or two semesters on differential geometry on Vol. 1, as many topics are worked out in great detail. Numerous computer-generated illustrations of old and new minimal surfaces are included to support intuition and imagination. Part 2 leads the reader up to the regularity theory fornonlinear elliptic boundary value problems illustrated by a particular and fascinating topic. There is no comparably comprehensive treatment of the problem of boundary regularity of minimal surfaces available in book form. This long-awaited book is a timely and welcome addition to the mathematical literature. | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Systems theory | |
650 | 4 | |a Global differential geometry | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Differential Geometry | |
650 | 4 | |a Systems Theory, Control | |
650 | 4 | |a Calculus of Variations and Optimal Control; Optimization | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Mathematik | |
700 | 1 | |a Dierkes, Ulrich |e Sonstige |4 oth | |
700 | 1 | |a Hildebrandt, Stefan |d 1936-2015 |e Sonstige |0 (DE-588)119219050 |4 oth | |
700 | 1 | |a Küster, Albrecht |e Sonstige |4 oth | |
773 | 0 | 8 | |w (DE-604)BV046796768 |g 2 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-662-08778-7 |
830 | 0 | |a Grundlehren der mathematischen Wissenschaften |v 296 |w (DE-604)BV049758308 |9 296 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-08776-3 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive |
Datensatz im Suchindex
_version_ | 1805079047333478400 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author_GND | (DE-588)119219050 |
building | Verbundindex |
bvnumber | BV046796913 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (ZDB-2-SMA)978-3-662-08776-3 (ZDB-2-BAE)978-3-662-08776-3 (OCoLC)1164649964 (DE-599)BVBBV046796913 |
dewey-full | 516.36 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.36 |
dewey-search | 516.36 |
dewey-sort | 3516.36 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1007/978-3-662-08776-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000 cc4500</leader><controlfield tag="001">BV046796913</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240626</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200707s1992 |||| o||u| ||||||eng d</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-08776-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SMA)978-3-662-08776-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-BAE)978-3-662-08776-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1164649964</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046796913</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.36</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Minimal surfaces</subfield><subfield code="n">2</subfield><subfield code="p">Boundary regularity</subfield><subfield code="c">Ulrich Dierkes, Stefan Hildebrand, Albrecht Küster, Ortwin Wohlrab</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">Springer-Verlag</subfield><subfield code="c">[1992]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 422 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Grundlehren der mathematischen Wissenschaften</subfield><subfield code="v">296</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Grundlehren der mathematischen Wissenschaften</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Minimal surfaces I is an introduction to the field of minimal surfaces and apresentation of the classical theory as well as of parts of the modern development centered around boundary value problems. Part II deals with the boundary behaviour of minimal surfaces. Part I is particularly apt for students who want to enter this interesting area of analysis and differential geometry which during the last 25 years of mathematical research has been very active and productive. Surveys of various subareas will lead the student to the current frontiers of knowledge and can alsobe useful to the researcher. The lecturer can easily base courses of one or two semesters on differential geometry on Vol. 1, as many topics are worked out in great detail. Numerous computer-generated illustrations of old and new minimal surfaces are included to support intuition and imagination. Part 2 leads the reader up to the regularity theory fornonlinear elliptic boundary value problems illustrated by a particular and fascinating topic. There is no comparably comprehensive treatment of the problem of boundary regularity of minimal surfaces available in book form. This long-awaited book is a timely and welcome addition to the mathematical literature.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systems theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systems Theory, Control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of Variations and Optimal Control; Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dierkes, Ulrich</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hildebrandt, Stefan</subfield><subfield code="d">1936-2015</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)119219050</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Küster, Albrecht</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV046796768</subfield><subfield code="g">2</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-662-08778-7</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Grundlehren der mathematischen Wissenschaften</subfield><subfield code="v">296</subfield><subfield code="w">(DE-604)BV049758308</subfield><subfield code="9">296</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-08776-3</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield></record></collection> |
id | DE-604.BV046796913 |
illustrated | Not Illustrated |
index_date | 2024-07-03T14:54:44Z |
indexdate | 2024-07-20T06:38:46Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032205749 |
oclc_num | 1164649964 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XI, 422 Seiten) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
publisher | Springer-Verlag |
record_format | marc |
series | Grundlehren der mathematischen Wissenschaften |
series2 | Grundlehren der mathematischen Wissenschaften |
spelling | Minimal surfaces 2 Boundary regularity Ulrich Dierkes, Stefan Hildebrand, Albrecht Küster, Ortwin Wohlrab Berlin Springer-Verlag [1992] 1 Online-Ressource (XI, 422 Seiten) txt rdacontent c rdamedia cr rdacarrier Grundlehren der mathematischen Wissenschaften 296 Grundlehren der mathematischen Wissenschaften Minimal surfaces I is an introduction to the field of minimal surfaces and apresentation of the classical theory as well as of parts of the modern development centered around boundary value problems. Part II deals with the boundary behaviour of minimal surfaces. Part I is particularly apt for students who want to enter this interesting area of analysis and differential geometry which during the last 25 years of mathematical research has been very active and productive. Surveys of various subareas will lead the student to the current frontiers of knowledge and can alsobe useful to the researcher. The lecturer can easily base courses of one or two semesters on differential geometry on Vol. 1, as many topics are worked out in great detail. Numerous computer-generated illustrations of old and new minimal surfaces are included to support intuition and imagination. Part 2 leads the reader up to the regularity theory fornonlinear elliptic boundary value problems illustrated by a particular and fascinating topic. There is no comparably comprehensive treatment of the problem of boundary regularity of minimal surfaces available in book form. This long-awaited book is a timely and welcome addition to the mathematical literature. Mathematics Systems theory Global differential geometry Mathematical optimization Differential Geometry Systems Theory, Control Calculus of Variations and Optimal Control; Optimization Theoretical, Mathematical and Computational Physics Mathematik Dierkes, Ulrich Sonstige oth Hildebrandt, Stefan 1936-2015 Sonstige (DE-588)119219050 oth Küster, Albrecht Sonstige oth (DE-604)BV046796768 2 Erscheint auch als Druck-Ausgabe 978-3-662-08778-7 Grundlehren der mathematischen Wissenschaften 296 (DE-604)BV049758308 296 https://doi.org/10.1007/978-3-662-08776-3 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Minimal surfaces Grundlehren der mathematischen Wissenschaften Mathematics Systems theory Global differential geometry Mathematical optimization Differential Geometry Systems Theory, Control Calculus of Variations and Optimal Control; Optimization Theoretical, Mathematical and Computational Physics Mathematik |
title | Minimal surfaces |
title_auth | Minimal surfaces |
title_exact_search | Minimal surfaces |
title_exact_search_txtP | Minimal surfaces |
title_full | Minimal surfaces 2 Boundary regularity Ulrich Dierkes, Stefan Hildebrand, Albrecht Küster, Ortwin Wohlrab |
title_fullStr | Minimal surfaces 2 Boundary regularity Ulrich Dierkes, Stefan Hildebrand, Albrecht Küster, Ortwin Wohlrab |
title_full_unstemmed | Minimal surfaces 2 Boundary regularity Ulrich Dierkes, Stefan Hildebrand, Albrecht Küster, Ortwin Wohlrab |
title_short | Minimal surfaces |
title_sort | minimal surfaces boundary regularity |
topic | Mathematics Systems theory Global differential geometry Mathematical optimization Differential Geometry Systems Theory, Control Calculus of Variations and Optimal Control; Optimization Theoretical, Mathematical and Computational Physics Mathematik |
topic_facet | Mathematics Systems theory Global differential geometry Mathematical optimization Differential Geometry Systems Theory, Control Calculus of Variations and Optimal Control; Optimization Theoretical, Mathematical and Computational Physics Mathematik |
url | https://doi.org/10.1007/978-3-662-08776-3 |
volume_link | (DE-604)BV046796768 (DE-604)BV049758308 |
work_keys_str_mv | AT dierkesulrich minimalsurfaces2 AT hildebrandtstefan minimalsurfaces2 AT kusteralbrecht minimalsurfaces2 |