Applied multiple imputation: advantages, pitfalls, new developments and applications in R
This book explores missing data techniques and provides a detailed and easy-to-read introduction to multiple imputation, covering the theoretical aspects of the topic and offering hands-on help with the implementation. It discusses the pros and cons of various techniques and concepts, including mult...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cham, Switzerland
Springer
2020
|
Schriftenreihe: | Statistics for social and behavioral sciences
|
Schlagworte: | |
Zusammenfassung: | This book explores missing data techniques and provides a detailed and easy-to-read introduction to multiple imputation, covering the theoretical aspects of the topic and offering hands-on help with the implementation. It discusses the pros and cons of various techniques and concepts, including multiple imputation quality diagnostics, an important topic for practitioners. It also presents current research and new, practically relevant developments in the field, and demonstrates the use of recent multiple imputation techniques designed for situations where distributional assumptions of the classical multiple imputation solutions are violated. In addition, the book features numerous practical tutorials for widely used R software packages to generate multiple imputations (norm, pan and mice). The provided R code and data sets allow readers to reproduce all the examples and enhance their understanding of the procedures. This book is intended for social and health scientists and other quantitative researchers who analyze incompletely observed data sets, as well as master’s and PhD students with a sound basic knowledge of statistics |
Beschreibung: | xi, 292 Seiten |
ISBN: | 9783030381639 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV046789149 | ||
003 | DE-604 | ||
005 | 20200918 | ||
007 | t | ||
008 | 200701s2020 |||| 00||| eng d | ||
020 | |a 9783030381639 |c hardback |9 978-3-030-38163-9 | ||
035 | |a (OCoLC)1163868062 | ||
035 | |a (DE-599)BVBBV046789149 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-29 | ||
100 | 1 | |a Kleinke, Kristian |0 (DE-588)1049350847 |4 aut | |
245 | 1 | 0 | |a Applied multiple imputation |b advantages, pitfalls, new developments and applications in R |c Kristian Kleinke, Jost Reinecke, Daniel Salfrán, Martin Spiess |
264 | 1 | |a Cham, Switzerland |b Springer |c 2020 | |
300 | |a xi, 292 Seiten | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Statistics for social and behavioral sciences | |
520 | |a This book explores missing data techniques and provides a detailed and easy-to-read introduction to multiple imputation, covering the theoretical aspects of the topic and offering hands-on help with the implementation. It discusses the pros and cons of various techniques and concepts, including multiple imputation quality diagnostics, an important topic for practitioners. It also presents current research and new, practically relevant developments in the field, and demonstrates the use of recent multiple imputation techniques designed for situations where distributional assumptions of the classical multiple imputation solutions are violated. In addition, the book features numerous practical tutorials for widely used R software packages to generate multiple imputations (norm, pan and mice). The provided R code and data sets allow readers to reproduce all the examples and enhance their understanding of the procedures. This book is intended for social and health scientists and other quantitative researchers who analyze incompletely observed data sets, as well as master’s and PhD students with a sound basic knowledge of statistics | ||
650 | 4 | |a Statistics | |
650 | 4 | |a Psychology—Methodology | |
650 | 4 | |a Psychological measurement | |
650 | 0 | 7 | |a Imputationstechnik |0 (DE-588)4609617-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fehlende Daten |0 (DE-588)4264715-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a R |g Programm |0 (DE-588)4705956-4 |2 gnd |9 rswk-swf |
653 | |a Hardcover, Softcover / Soziologie/Methoden der empirischen und qualitativen Sozialforschung | ||
689 | 0 | 0 | |a R |g Programm |0 (DE-588)4705956-4 |D s |
689 | 0 | 1 | |a Imputationstechnik |0 (DE-588)4609617-6 |D s |
689 | 0 | 2 | |a Fehlende Daten |0 (DE-588)4264715-0 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Reinecke, Jost |d 1957- |0 (DE-588)130072915 |4 aut | |
700 | 1 | |a Salfrán, Daniel |0 (DE-588)1206884088 |4 aut | |
700 | 1 | |a Spieß, Martin |d 1960- |0 (DE-588)142366668 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-030-38164-6 |
999 | |a oai:aleph.bib-bvb.de:BVB01-032198132 |
Datensatz im Suchindex
_version_ | 1804181577337405440 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Kleinke, Kristian Reinecke, Jost 1957- Salfrán, Daniel Spieß, Martin 1960- |
author_GND | (DE-588)1049350847 (DE-588)130072915 (DE-588)1206884088 (DE-588)142366668 |
author_facet | Kleinke, Kristian Reinecke, Jost 1957- Salfrán, Daniel Spieß, Martin 1960- |
author_role | aut aut aut aut |
author_sort | Kleinke, Kristian |
author_variant | k k kk j r jr d s ds m s ms |
building | Verbundindex |
bvnumber | BV046789149 |
ctrlnum | (OCoLC)1163868062 (DE-599)BVBBV046789149 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02903nam a2200457 c 4500</leader><controlfield tag="001">BV046789149</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200918 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">200701s2020 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030381639</subfield><subfield code="c">hardback</subfield><subfield code="9">978-3-030-38163-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1163868062</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046789149</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kleinke, Kristian</subfield><subfield code="0">(DE-588)1049350847</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Applied multiple imputation</subfield><subfield code="b">advantages, pitfalls, new developments and applications in R</subfield><subfield code="c">Kristian Kleinke, Jost Reinecke, Daniel Salfrán, Martin Spiess</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham, Switzerland</subfield><subfield code="b">Springer</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xi, 292 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Statistics for social and behavioral sciences</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book explores missing data techniques and provides a detailed and easy-to-read introduction to multiple imputation, covering the theoretical aspects of the topic and offering hands-on help with the implementation. It discusses the pros and cons of various techniques and concepts, including multiple imputation quality diagnostics, an important topic for practitioners. It also presents current research and new, practically relevant developments in the field, and demonstrates the use of recent multiple imputation techniques designed for situations where distributional assumptions of the classical multiple imputation solutions are violated. In addition, the book features numerous practical tutorials for widely used R software packages to generate multiple imputations (norm, pan and mice). The provided R code and data sets allow readers to reproduce all the examples and enhance their understanding of the procedures. This book is intended for social and health scientists and other quantitative researchers who analyze incompletely observed data sets, as well as master’s and PhD students with a sound basic knowledge of statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics </subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Psychology—Methodology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Psychological measurement</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Imputationstechnik</subfield><subfield code="0">(DE-588)4609617-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fehlende Daten</subfield><subfield code="0">(DE-588)4264715-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">R</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4705956-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hardcover, Softcover / Soziologie/Methoden der empirischen und qualitativen Sozialforschung</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">R</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4705956-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Imputationstechnik</subfield><subfield code="0">(DE-588)4609617-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Fehlende Daten</subfield><subfield code="0">(DE-588)4264715-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Reinecke, Jost</subfield><subfield code="d">1957-</subfield><subfield code="0">(DE-588)130072915</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Salfrán, Daniel</subfield><subfield code="0">(DE-588)1206884088</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Spieß, Martin</subfield><subfield code="d">1960-</subfield><subfield code="0">(DE-588)142366668</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-030-38164-6</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032198132</subfield></datafield></record></collection> |
id | DE-604.BV046789149 |
illustrated | Not Illustrated |
index_date | 2024-07-03T14:52:30Z |
indexdate | 2024-07-10T08:53:52Z |
institution | BVB |
isbn | 9783030381639 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032198132 |
oclc_num | 1163868062 |
open_access_boolean | |
owner | DE-29 |
owner_facet | DE-29 |
physical | xi, 292 Seiten |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Springer |
record_format | marc |
series2 | Statistics for social and behavioral sciences |
spelling | Kleinke, Kristian (DE-588)1049350847 aut Applied multiple imputation advantages, pitfalls, new developments and applications in R Kristian Kleinke, Jost Reinecke, Daniel Salfrán, Martin Spiess Cham, Switzerland Springer 2020 xi, 292 Seiten txt rdacontent n rdamedia nc rdacarrier Statistics for social and behavioral sciences This book explores missing data techniques and provides a detailed and easy-to-read introduction to multiple imputation, covering the theoretical aspects of the topic and offering hands-on help with the implementation. It discusses the pros and cons of various techniques and concepts, including multiple imputation quality diagnostics, an important topic for practitioners. It also presents current research and new, practically relevant developments in the field, and demonstrates the use of recent multiple imputation techniques designed for situations where distributional assumptions of the classical multiple imputation solutions are violated. In addition, the book features numerous practical tutorials for widely used R software packages to generate multiple imputations (norm, pan and mice). The provided R code and data sets allow readers to reproduce all the examples and enhance their understanding of the procedures. This book is intended for social and health scientists and other quantitative researchers who analyze incompletely observed data sets, as well as master’s and PhD students with a sound basic knowledge of statistics Statistics Psychology—Methodology Psychological measurement Imputationstechnik (DE-588)4609617-6 gnd rswk-swf Fehlende Daten (DE-588)4264715-0 gnd rswk-swf R Programm (DE-588)4705956-4 gnd rswk-swf Hardcover, Softcover / Soziologie/Methoden der empirischen und qualitativen Sozialforschung R Programm (DE-588)4705956-4 s Imputationstechnik (DE-588)4609617-6 s Fehlende Daten (DE-588)4264715-0 s DE-604 Reinecke, Jost 1957- (DE-588)130072915 aut Salfrán, Daniel (DE-588)1206884088 aut Spieß, Martin 1960- (DE-588)142366668 aut Erscheint auch als Online-Ausgabe 978-3-030-38164-6 |
spellingShingle | Kleinke, Kristian Reinecke, Jost 1957- Salfrán, Daniel Spieß, Martin 1960- Applied multiple imputation advantages, pitfalls, new developments and applications in R Statistics Psychology—Methodology Psychological measurement Imputationstechnik (DE-588)4609617-6 gnd Fehlende Daten (DE-588)4264715-0 gnd R Programm (DE-588)4705956-4 gnd |
subject_GND | (DE-588)4609617-6 (DE-588)4264715-0 (DE-588)4705956-4 |
title | Applied multiple imputation advantages, pitfalls, new developments and applications in R |
title_auth | Applied multiple imputation advantages, pitfalls, new developments and applications in R |
title_exact_search | Applied multiple imputation advantages, pitfalls, new developments and applications in R |
title_exact_search_txtP | Applied multiple imputation advantages, pitfalls, new developments and applications in R |
title_full | Applied multiple imputation advantages, pitfalls, new developments and applications in R Kristian Kleinke, Jost Reinecke, Daniel Salfrán, Martin Spiess |
title_fullStr | Applied multiple imputation advantages, pitfalls, new developments and applications in R Kristian Kleinke, Jost Reinecke, Daniel Salfrán, Martin Spiess |
title_full_unstemmed | Applied multiple imputation advantages, pitfalls, new developments and applications in R Kristian Kleinke, Jost Reinecke, Daniel Salfrán, Martin Spiess |
title_short | Applied multiple imputation |
title_sort | applied multiple imputation advantages pitfalls new developments and applications in r |
title_sub | advantages, pitfalls, new developments and applications in R |
topic | Statistics Psychology—Methodology Psychological measurement Imputationstechnik (DE-588)4609617-6 gnd Fehlende Daten (DE-588)4264715-0 gnd R Programm (DE-588)4705956-4 gnd |
topic_facet | Statistics Psychology—Methodology Psychological measurement Imputationstechnik Fehlende Daten R Programm |
work_keys_str_mv | AT kleinkekristian appliedmultipleimputationadvantagespitfallsnewdevelopmentsandapplicationsinr AT reineckejost appliedmultipleimputationadvantagespitfallsnewdevelopmentsandapplicationsinr AT salfrandaniel appliedmultipleimputationadvantagespitfallsnewdevelopmentsandapplicationsinr AT spießmartin appliedmultipleimputationadvantagespitfallsnewdevelopmentsandapplicationsinr |