Commutative algebra:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston
De Gruyter
[2020]
|
Schriftenreihe: | De Gruyter graduate
|
Schlagworte: | |
Online-Zugang: | http://www.degruyter.com/search?f_0=isbnissn&q_0=9783110616972&searchTitles=true Inhaltsverzeichnis Inhaltsverzeichnis |
Beschreibung: | XV, 339 Seiten Illustrationen 24 cm |
ISBN: | 9783110616972 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV046756845 | ||
003 | DE-604 | ||
005 | 20221115 | ||
007 | t | ||
008 | 200609s2020 gw a||| |||| 00||| eng d | ||
015 | |a 2 |2 dnb | ||
016 | 7 | |a 1200036573 |2 DE-101 | |
020 | |a 9783110616972 |c Broschur |9 978-3-11-061697-2 | ||
035 | |a (OCoLC)1129049920 | ||
035 | |a (DE-599)DNB1200036573 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-634 |a DE-83 |a DE-703 |a DE-20 |a DE-11 | ||
082 | 0 | |a 512.44 |2 23/ger | |
084 | |a SK 230 |0 (DE-625)143225: |2 rvk | ||
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
084 | |a 510 |2 sdnb | ||
100 | 1 | |a Simis, Aron |d 1942- |e Verfasser |0 (DE-588)120670683X |4 aut | |
245 | 1 | 0 | |a Commutative algebra |c Aron Simis |
264 | 1 | |a Berlin ; Boston |b De Gruyter |c [2020] | |
264 | 4 | |c © 2020 | |
300 | |a XV, 339 Seiten |b Illustrationen |c 24 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a De Gruyter graduate | |
650 | 0 | 7 | |a Kommutative Algebra |0 (DE-588)4164821-3 |2 gnd |9 rswk-swf |
653 | |a Idealtheorie | ||
653 | |a Kommutative Algebra | ||
653 | |a Ringtheorie | ||
653 | |a TB: Textbook | ||
689 | 0 | 0 | |a Kommutative Algebra |0 (DE-588)4164821-3 |D s |
689 | 0 | |5 DE-604 | |
710 | 2 | |a Walter de Gruyter GmbH & Co. KG |0 (DE-588)10095502-2 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 978-3-11-061698-9 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-3-11-061707-8 |
856 | 4 | 2 | |m X:MVB |u http://www.degruyter.com/search?f_0=isbnissn&q_0=9783110616972&searchTitles=true |
856 | 4 | 2 | |m B:DE-101 |q application/pdf |u https://d-nb.info/1200036573/04 |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032166468&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-032166468 |
Datensatz im Suchindex
_version_ | 1804181519920529408 |
---|---|
adam_text | CONTENTS
THANKS
*
V
FOREWORD
*
VII
PARTI
1
1.1
1.1.1
1.1.2
1.1.3
1.1.4
1.1.5
1.2
1.2.1
1.2.2
1.2.3
1.3
1.3.1
1.3.2
1.4
BASIC
INTRODUCTORY
THEORY
*
3
COMMUTATIVE
RINGS
AND
IDEALS
*
3
IDEALS,
GENERATORS
*
3
IDEALS,
RESIDUE
CLASSES
*
4
IDEAL
OPERATIONS
*
5
PRIME
AND
PRIMARY
IDEALS
*
8
A
SOURCE
OF
EXAMPLES:
MONOMIAL
IDEALS
*
9
ALGEBRAS
*
11
POLYNOMIALS
AND
FINITELY
GENERATED
ALGEBRAS
*
11
THE
TRANSCENDENCE
DEGREE
*
12
BASIC
PROPERTIES
OF
THE
TRANSCENDENCE
DEGREE
*
15
HISTORIC
NOTE
-----
17
TERMINOLOGY
-----
17
EARLY
ROOTS
*
17
EXERCISES
*
19
2
2.1
2.1.1
2.1.2
2.1.3
2.2
2.2.1
2.2.2
2.2.3
2.3
2.3.1
2.3.2
2.3.3
2.4
2.5
2.5.1
2.5.2
MAIN
TOOLS
*
23
RINGS
OF
FRACTIONS
----
23
DEFINITIONS
-----
23
GENERAL
PROPERTIES
OF
FRACTIONS
*
24
LOCAL
RINGS
AND
SYMBOLIC
POWERS
*
27
INTEGRAL
RING
EXTENSIONS
*
28
PRELIMINARIES
*
28
THE
COHEN-SEIDENBERG
THEOREMS
*
30
INTEGRAL
CLOSURE
OF
IDEALS
*
32
KRULL
DIMENSION
AND
NOETHER
NORMALIZATION
*
35
BEHAVIOR
IN
INTEGRAL
EXTENSIONS
*
36
NOETHER
NORMALIZATION
AND
THE
DIMENSION
THEOREM
*
36
COMPLEMENTS
TO
NOETHER
*
S
THEOREM
*
37
NULLSTELLENSATZ
*
38
DIMENSION
THEORY
1
-----42
NOETHERIAN
AND
ARTINIAN
RINGS
*
42
ASSOCIATED
PRIMES
*
50
XII
CONTENTS
2.5.3
2.5.4
2.6
2.6.1
2.6.2
2.7
2.7.1
2.7.2
2.7.3
2.7.4
2.7.5
2.8
2.8.1
2.8.2
2.8.3
2.8.4
2.8.5
2.8.6
2.8.7
2.9
KRULL
*
S
PRINCIPAL
IDEAL
THEOREM
*
53
DIMENSION
UNDER
EXTENSIONS
*
55
PRIMARY
DECOMPOSITION
*
60
THE
NATURE
OF
THE
COMPONENTS
*
60
THE
LASKER-NOETHER
FUNDAMENTAL
THEOREM
*
61
HILBERT
CHARACTERISTIC
FUNCTION
*
62
BASICS
ON
THE
UNDERLYING
GRADED
STRUCTURES
*
62
FIRST
RESULTS
-----67
MORE
ADVANCED
STEPS
*
68
THE
FORMULA
OF
VAN
DER
WAERDEN
*
74
MULTIPLICITIES
GALORE
*
77
HISTORIC
NOTE
-----
82
FRACTIONS
-----82
PRUFER
AND
THE
DETERMINANTS
TRICK
*
83
NOETHER
AND
KRULL
-----
84
PRIMARY
DECOMPOSITION
*
85
HILBERT
AND
ARTIN
-----
86
THE
LASKER-NOETHER
BINARY
-----
87
HILBERT
FUNCTION
-----89
EXERCISES
*
90
3
3.1
3.1.1
3.1.2
3.2
3.3
3.4
3.5
3.5.1
3.5.2
3.6
OVERVIEW
OF
MODULE
THEORY
*
99
NOETHERIAN
MODULES
*
99
CHAIN
CONDITIONS
*
99
COMPOSITION
SERIES
*
100
EXTERNAL
OPERATIONS
*
102
FREE
PRESENTATION
AND
FITTING
IDEALS
*
106
TORSION
AND
TORSION-FREE
MODULES
*
111
HISTORIC
NOTE
-----
114
COMPOSITION
SERIES
*
114
FITTING
IDEALS
-----
115
EXERCISES
*
115
4
4.1
4.1.1
4.1.2
4.2
4.2.1
4.2.2
4.2.3
4.2.4
DERIVATIONS,
DIFFERENTIALS
AND
JACOBIAN
IDEALS
*
119
PRELIMINARIES
*
119
DERIVATIONS
OF
SUBALGEBRAS
*
122
DERIVATIONS
WITH
VALUES
ON
A
LARGER
RING
*
124
DIFFERENTIAL
STRUCTURES
*
125
A
FIRST
STRUCTURE
THEOREM
*
125
THE
UNIVERSAL
MODULE
OF
DIFFERENTIALS
*
126
THE
CONORMAL
EXACT
SEQUENCE
*
127
KAHLER
DIFFERENTIALS
*
130
CONTENTS
*
XIII
4.3
4.3.1
4.3.2
4.4
4.4.1
4.4.2
4.5
4.6
THE
ISSUE
OF
REGULARITY
IN
ALGEBRA
AND
GEOMETRY
*
131
THE
JACOBIAN
IDEAL
*
131
HYPERSURFACES
*
132
DIFFERENTS
AND
RAMIFICATION
*
134
RAMIFICATION
-----
134
PURITY
-----
136
HISTORIC
NOTE
-----
137
EXERCISES
-----
138
PART
II
5
5.1
5.1.1
5.1.2
5.1.3
5.2
5.2.1
5.2.2
5.2.3
5.3
5.3.1
5.3.2
5.4
5.4.1
5.4.2
5.5
5.5.1
5.5.2
5.5.3
5.5.4
5.6
BASIC
ADVANCED
THEORY
*
145
DIMENSION
THEORY
*
145
ANNIHILATORS,
1
-----
145
THE
NAKAYAMA
LEMMA
*
145
THE
KRULL
DIMENSION
AND
SYSTEMS
OF
PARAMETERS
*
147
ASSOCIATED
PRIMES
AND
PRIMARY
DECOMPOSITION
*
151
ANNIHILATORS,
2
-----
151
ASSOCIATED
PRIMES
*
152
PRIMARY
DECOMPOSITION
-----
155
DEPTH
AND
COHEN-MACAULAY
MODULES
*
159
BASIC
PROPERTIES
OF
DEPTH
*
162
MOBILITY
OF
DEPTH
-----
164
COHEN-MACAULAY
MODULES
*
167
SPECIAL
PROPERTIES
OF
COHEN-MACAULAY
MODULES
*
169
NUMERICAL
INVARIANTS:
GORENSTEIN
RINGS
*
170
HISTORIC
NOTE
-----
174
DIMENSION
-----
174
PRIMARY
DECOMPOSITION
*
174
THE
DEPTH
BEHIND
THE
CURTAINS
-----
175
THE
KRUCHESAM
THEOREM
-----
175
EXERCISES
*
176
6
6.1
6.1.1
6.1.2
6.2
6.2.1
6.2.2
6.2.3
HOMOLOGICAL
METHODS
*
179
REGULAR
LOCAL
RINGS
-----
179
RELATION
TO
BASIC
INVARIANTS
*
179
PROPERTIES
*
181
THE
HOMOLOGICAL
TOOL
FOR
NOETHERIAN
RINGS
-----
182
PROJECTIVE
MODULES
*
182
HOMOLPGICAL
DIMENSION
-----
184
CHAIN
COMPLEXES
-----
200
XIV
*
CONTENTS
6.2.4
BASICS
ON
DERIVED
FUNCTORS
*
206
6.2.5
REES
THEOREM
AND
PERFECT
IDEALS
*
222
6.3
THE
METHOD
OF
THE
KOSZUL
COMPLEX
*
226
6.3.1
LONG
EXACT
SEQUENCES
OF
KOSZUL
HOMOLOGY
*
229
6.3.2
THE
THEOREM
OF
SERRE
*
234
6.4
VARIATIONS
ON
THE
KOSZUL
COMPLEX:
DETERMINANTAL
IDEALS
*
236
6.4.1
THE
EAGON-NORTHCOTT
COMPLEX
-----
236
6.4.2
THE
SCANDINAVIAN
COMPLEX
*
242
6.4.3
THE
JAPANESE-POLISH
COMPLEX
*
244
6.4.4
THE
OSNABRUCK-RECIFE
COMPLEX
*
246
6.5
HISTORIC
NOTE
-----
248
6.5.1
PROJECTIVE
MODULES
*
248
6.5.2
HOMOLOGY
-----
249
6.5.3
INJECTIVE
MODULES
*
249
6.5.4
DETERMINANTAL
IDEALS
*
250
6.6
EXERCISES
-----
251
7
GRADED
STRUCTURES
*
255
7.1
GRADED
PRELIMINARIES
*
255
7.2
THE
SYMMETRIC
ALGEBRA
*
257
7.2.1
TORSION-FREENESS
-----
258
7.2.2
IDEALS
OF
LINEAR
TYPE,
I
*
261
7.2.3
DIMENSION
-----
263
7.3
REES
ALGEBRAS
*
269
7.3.1
GEOMETRIC
ROOTS
*
269
7.3.2
DIMENSIONS
-----
271
7.3.3
THE
FIBER
CONE
AND
THE
ANALYTIC
SPREAD
*
276
7.3.4
IDEALS
OF
LINEAR
TYPE,
II
*
279
7.3.5
SPECIAL
PROPERTIES
(SURVEY)
-----
284
7.3.6
SPECIALIZATION
-----
289
7.4
HILBERT
FUNCTION
OF
MODULES
*
293
7.4.1
COMBINATORIAL
PRELIMINARIES
*
294
7.4.2
THE
GRADED
HILBERT
FUNCTION
----
297
7.4.3
INTERTWINING
GRADED
HILBERT
FUNCTIONS
*
303
7.4.4
THE
LOCAL
HILBERT-SAMUEL
FUNCTION
*
309
7.5
HISTORIC
NOTE
-----
316
7.5.1
THE
REES
ALGEBRA
*
316
7.5.2
THE
SYMMETRIC
ALGEBRA
*
316
7.5.3
ARTIN-REES
LEMMA
*
317
7.5.4
ASSOCIATIVITY
FORMULAS
*
317
7.6
EXERCISES
*
317
BIBLIOGRAPHY
*
321
INDEX
*
329
CONTENTS
*
XV
|
adam_txt |
CONTENTS
THANKS
*
V
FOREWORD
*
VII
PARTI
1
1.1
1.1.1
1.1.2
1.1.3
1.1.4
1.1.5
1.2
1.2.1
1.2.2
1.2.3
1.3
1.3.1
1.3.2
1.4
BASIC
INTRODUCTORY
THEORY
*
3
COMMUTATIVE
RINGS
AND
IDEALS
*
3
IDEALS,
GENERATORS
*
3
IDEALS,
RESIDUE
CLASSES
*
4
IDEAL
OPERATIONS
*
5
PRIME
AND
PRIMARY
IDEALS
*
8
A
SOURCE
OF
EXAMPLES:
MONOMIAL
IDEALS
*
9
ALGEBRAS
*
11
POLYNOMIALS
AND
FINITELY
GENERATED
ALGEBRAS
*
11
THE
TRANSCENDENCE
DEGREE
*
12
BASIC
PROPERTIES
OF
THE
TRANSCENDENCE
DEGREE
*
15
HISTORIC
NOTE
-----
17
TERMINOLOGY
-----
17
EARLY
ROOTS
*
17
EXERCISES
*
19
2
2.1
2.1.1
2.1.2
2.1.3
2.2
2.2.1
2.2.2
2.2.3
2.3
2.3.1
2.3.2
2.3.3
2.4
2.5
2.5.1
2.5.2
MAIN
TOOLS
*
23
RINGS
OF
FRACTIONS
----
23
DEFINITIONS
-----
23
GENERAL
PROPERTIES
OF
FRACTIONS
*
24
LOCAL
RINGS
AND
SYMBOLIC
POWERS
*
27
INTEGRAL
RING
EXTENSIONS
*
28
PRELIMINARIES
*
28
THE
COHEN-SEIDENBERG
THEOREMS
*
30
INTEGRAL
CLOSURE
OF
IDEALS
*
32
KRULL
DIMENSION
AND
NOETHER
NORMALIZATION
*
35
BEHAVIOR
IN
INTEGRAL
EXTENSIONS
*
36
NOETHER
NORMALIZATION
AND
THE
DIMENSION
THEOREM
*
36
COMPLEMENTS
TO
NOETHER
*
S
THEOREM
*
37
NULLSTELLENSATZ
*
38
DIMENSION
THEORY
1
-----42
NOETHERIAN
AND
ARTINIAN
RINGS
*
42
ASSOCIATED
PRIMES
*
50
XII
CONTENTS
2.5.3
2.5.4
2.6
2.6.1
2.6.2
2.7
2.7.1
2.7.2
2.7.3
2.7.4
2.7.5
2.8
2.8.1
2.8.2
2.8.3
2.8.4
2.8.5
2.8.6
2.8.7
2.9
KRULL
*
S
PRINCIPAL
IDEAL
THEOREM
*
53
DIMENSION
UNDER
EXTENSIONS
*
55
PRIMARY
DECOMPOSITION
*
60
THE
NATURE
OF
THE
COMPONENTS
*
60
THE
LASKER-NOETHER
FUNDAMENTAL
THEOREM
*
61
HILBERT
CHARACTERISTIC
FUNCTION
*
62
BASICS
ON
THE
UNDERLYING
GRADED
STRUCTURES
*
62
FIRST
RESULTS
-----67
MORE
ADVANCED
STEPS
*
68
THE
FORMULA
OF
VAN
DER
WAERDEN
*
74
MULTIPLICITIES
GALORE
*
77
HISTORIC
NOTE
-----
82
FRACTIONS
-----82
PRUFER
AND
THE
DETERMINANTS
TRICK
*
83
NOETHER
AND
KRULL
-----
84
PRIMARY
DECOMPOSITION
*
85
HILBERT
AND
ARTIN
-----
86
THE
LASKER-NOETHER
BINARY
-----
87
HILBERT
FUNCTION
-----89
EXERCISES
*
90
3
3.1
3.1.1
3.1.2
3.2
3.3
3.4
3.5
3.5.1
3.5.2
3.6
OVERVIEW
OF
MODULE
THEORY
*
99
NOETHERIAN
MODULES
*
99
CHAIN
CONDITIONS
*
99
COMPOSITION
SERIES
*
100
EXTERNAL
OPERATIONS
*
102
FREE
PRESENTATION
AND
FITTING
IDEALS
*
106
TORSION
AND
TORSION-FREE
MODULES
*
111
HISTORIC
NOTE
-----
114
COMPOSITION
SERIES
*
114
FITTING
IDEALS
-----
115
EXERCISES
*
115
4
4.1
4.1.1
4.1.2
4.2
4.2.1
4.2.2
4.2.3
4.2.4
DERIVATIONS,
DIFFERENTIALS
AND
JACOBIAN
IDEALS
*
119
PRELIMINARIES
*
119
DERIVATIONS
OF
SUBALGEBRAS
*
122
DERIVATIONS
WITH
VALUES
ON
A
LARGER
RING
*
124
DIFFERENTIAL
STRUCTURES
*
125
A
FIRST
STRUCTURE
THEOREM
*
125
THE
UNIVERSAL
MODULE
OF
DIFFERENTIALS
*
126
THE
CONORMAL
EXACT
SEQUENCE
*
127
KAHLER
DIFFERENTIALS
*
130
CONTENTS
*
XIII
4.3
4.3.1
4.3.2
4.4
4.4.1
4.4.2
4.5
4.6
THE
ISSUE
OF
REGULARITY
IN
ALGEBRA
AND
GEOMETRY
*
131
THE
JACOBIAN
IDEAL
*
131
HYPERSURFACES
*
132
DIFFERENTS
AND
RAMIFICATION
*
134
RAMIFICATION
-----
134
PURITY
-----
136
HISTORIC
NOTE
-----
137
EXERCISES
-----
138
PART
II
5
5.1
5.1.1
5.1.2
5.1.3
5.2
5.2.1
5.2.2
5.2.3
5.3
5.3.1
5.3.2
5.4
5.4.1
5.4.2
5.5
5.5.1
5.5.2
5.5.3
5.5.4
5.6
BASIC
ADVANCED
THEORY
*
145
DIMENSION
THEORY
*
145
ANNIHILATORS,
1
-----
145
THE
NAKAYAMA
LEMMA
*
145
THE
KRULL
DIMENSION
AND
SYSTEMS
OF
PARAMETERS
*
147
ASSOCIATED
PRIMES
AND
PRIMARY
DECOMPOSITION
*
151
ANNIHILATORS,
2
-----
151
ASSOCIATED
PRIMES
*
152
PRIMARY
DECOMPOSITION
-----
155
DEPTH
AND
COHEN-MACAULAY
MODULES
*
159
BASIC
PROPERTIES
OF
DEPTH
*
162
MOBILITY
OF
DEPTH
-----
164
COHEN-MACAULAY
MODULES
*
167
SPECIAL
PROPERTIES
OF
COHEN-MACAULAY
MODULES
*
169
NUMERICAL
INVARIANTS:
GORENSTEIN
RINGS
*
170
HISTORIC
NOTE
-----
174
DIMENSION
-----
174
PRIMARY
DECOMPOSITION
*
174
THE
DEPTH
BEHIND
THE
CURTAINS
-----
175
THE
KRUCHESAM
THEOREM
-----
175
EXERCISES
*
176
6
6.1
6.1.1
6.1.2
6.2
6.2.1
6.2.2
6.2.3
HOMOLOGICAL
METHODS
*
179
REGULAR
LOCAL
RINGS
-----
179
RELATION
TO
BASIC
INVARIANTS
*
179
PROPERTIES
*
181
THE
HOMOLOGICAL
TOOL
FOR
NOETHERIAN
RINGS
-----
182
PROJECTIVE
MODULES
*
182
HOMOLPGICAL
DIMENSION
-----
184
CHAIN
COMPLEXES
-----
200
XIV
*
CONTENTS
6.2.4
BASICS
ON
DERIVED
FUNCTORS
*
206
6.2.5
REES
THEOREM
AND
PERFECT
IDEALS
*
222
6.3
THE
METHOD
OF
THE
KOSZUL
COMPLEX
*
226
6.3.1
LONG
EXACT
SEQUENCES
OF
KOSZUL
HOMOLOGY
*
229
6.3.2
THE
THEOREM
OF
SERRE
*
234
6.4
VARIATIONS
ON
THE
KOSZUL
COMPLEX:
DETERMINANTAL
IDEALS
*
236
6.4.1
THE
EAGON-NORTHCOTT
COMPLEX
-----
236
6.4.2
THE
SCANDINAVIAN
COMPLEX
*
242
6.4.3
THE
JAPANESE-POLISH
COMPLEX
*
244
6.4.4
THE
OSNABRUCK-RECIFE
COMPLEX
*
246
6.5
HISTORIC
NOTE
-----
248
6.5.1
PROJECTIVE
MODULES
*
248
6.5.2
HOMOLOGY
-----
249
6.5.3
INJECTIVE
MODULES
*
249
6.5.4
DETERMINANTAL
IDEALS
*
250
6.6
EXERCISES
-----
251
7
GRADED
STRUCTURES
*
255
7.1
GRADED
PRELIMINARIES
*
255
7.2
THE
SYMMETRIC
ALGEBRA
*
257
7.2.1
TORSION-FREENESS
-----
258
7.2.2
IDEALS
OF
LINEAR
TYPE,
I
*
261
7.2.3
DIMENSION
-----
263
7.3
REES
ALGEBRAS
*
269
7.3.1
GEOMETRIC
ROOTS
*
269
7.3.2
DIMENSIONS
-----
271
7.3.3
THE
FIBER
CONE
AND
THE
ANALYTIC
SPREAD
*
276
7.3.4
IDEALS
OF
LINEAR
TYPE,
II
*
279
7.3.5
SPECIAL
PROPERTIES
(SURVEY)
-----
284
7.3.6
SPECIALIZATION
-----
289
7.4
HILBERT
FUNCTION
OF
MODULES
*
293
7.4.1
COMBINATORIAL
PRELIMINARIES
*
294
7.4.2
THE
GRADED
HILBERT
FUNCTION
----
297
7.4.3
INTERTWINING
GRADED
HILBERT
FUNCTIONS
*
303
7.4.4
THE
LOCAL
HILBERT-SAMUEL
FUNCTION
*
309
7.5
HISTORIC
NOTE
-----
316
7.5.1
THE
REES
ALGEBRA
*
316
7.5.2
THE
SYMMETRIC
ALGEBRA
*
316
7.5.3
ARTIN-REES
LEMMA
*
317
7.5.4
ASSOCIATIVITY
FORMULAS
*
317
7.6
EXERCISES
*
317
BIBLIOGRAPHY
*
321
INDEX
*
329
CONTENTS
*
XV |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Simis, Aron 1942- |
author_GND | (DE-588)120670683X |
author_facet | Simis, Aron 1942- |
author_role | aut |
author_sort | Simis, Aron 1942- |
author_variant | a s as |
building | Verbundindex |
bvnumber | BV046756845 |
classification_rvk | SK 230 SK 240 |
ctrlnum | (OCoLC)1129049920 (DE-599)DNB1200036573 |
dewey-full | 512.44 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.44 |
dewey-search | 512.44 |
dewey-sort | 3512.44 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02005nam a2200517 c 4500</leader><controlfield tag="001">BV046756845</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20221115 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">200609s2020 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">2</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1200036573</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110616972</subfield><subfield code="c">Broschur</subfield><subfield code="9">978-3-11-061697-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1129049920</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1200036573</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.44</subfield><subfield code="2">23/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 230</subfield><subfield code="0">(DE-625)143225:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Simis, Aron</subfield><subfield code="d">1942-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)120670683X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Commutative algebra</subfield><subfield code="c">Aron Simis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Boston</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XV, 339 Seiten</subfield><subfield code="b">Illustrationen</subfield><subfield code="c">24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">De Gruyter graduate</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kommutative Algebra</subfield><subfield code="0">(DE-588)4164821-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Idealtheorie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Kommutative Algebra</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Ringtheorie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">TB: Textbook</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kommutative Algebra</subfield><subfield code="0">(DE-588)4164821-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Walter de Gruyter GmbH & Co. KG</subfield><subfield code="0">(DE-588)10095502-2</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-3-11-061698-9</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-3-11-061707-8</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="u">http://www.degruyter.com/search?f_0=isbnissn&q_0=9783110616972&searchTitles=true</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">B:DE-101</subfield><subfield code="q">application/pdf</subfield><subfield code="u">https://d-nb.info/1200036573/04</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032166468&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032166468</subfield></datafield></record></collection> |
id | DE-604.BV046756845 |
illustrated | Illustrated |
index_date | 2024-07-03T14:43:20Z |
indexdate | 2024-07-10T08:52:57Z |
institution | BVB |
institution_GND | (DE-588)10095502-2 |
isbn | 9783110616972 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032166468 |
oclc_num | 1129049920 |
open_access_boolean | |
owner | DE-634 DE-83 DE-703 DE-20 DE-11 |
owner_facet | DE-634 DE-83 DE-703 DE-20 DE-11 |
physical | XV, 339 Seiten Illustrationen 24 cm |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | De Gruyter |
record_format | marc |
series2 | De Gruyter graduate |
spelling | Simis, Aron 1942- Verfasser (DE-588)120670683X aut Commutative algebra Aron Simis Berlin ; Boston De Gruyter [2020] © 2020 XV, 339 Seiten Illustrationen 24 cm txt rdacontent n rdamedia nc rdacarrier De Gruyter graduate Kommutative Algebra (DE-588)4164821-3 gnd rswk-swf Idealtheorie Kommutative Algebra Ringtheorie TB: Textbook Kommutative Algebra (DE-588)4164821-3 s DE-604 Walter de Gruyter GmbH & Co. KG (DE-588)10095502-2 pbl Erscheint auch als Online-Ausgabe, PDF 978-3-11-061698-9 Erscheint auch als Online-Ausgabe, EPUB 978-3-11-061707-8 X:MVB http://www.degruyter.com/search?f_0=isbnissn&q_0=9783110616972&searchTitles=true B:DE-101 application/pdf https://d-nb.info/1200036573/04 Inhaltsverzeichnis DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032166468&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Simis, Aron 1942- Commutative algebra Kommutative Algebra (DE-588)4164821-3 gnd |
subject_GND | (DE-588)4164821-3 |
title | Commutative algebra |
title_auth | Commutative algebra |
title_exact_search | Commutative algebra |
title_exact_search_txtP | Commutative algebra |
title_full | Commutative algebra Aron Simis |
title_fullStr | Commutative algebra Aron Simis |
title_full_unstemmed | Commutative algebra Aron Simis |
title_short | Commutative algebra |
title_sort | commutative algebra |
topic | Kommutative Algebra (DE-588)4164821-3 gnd |
topic_facet | Kommutative Algebra |
url | http://www.degruyter.com/search?f_0=isbnissn&q_0=9783110616972&searchTitles=true https://d-nb.info/1200036573/04 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032166468&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT simisaron commutativealgebra AT walterdegruytergmbhcokg commutativealgebra |
Es ist kein Print-Exemplar vorhanden.
Inhaltsverzeichnis