Finite elements: theory and algorithms
Written in easy to understand language, this self-explanatory guide introduces the fundamentals of finite element methods and its application to differential equations. Beginning with a brief introduction to Sobolev spaces and elliptic scalar problems, the text progresses through an explanation of f...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
[2017]
|
Schriftenreihe: | Cambridge--IISc series
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Written in easy to understand language, this self-explanatory guide introduces the fundamentals of finite element methods and its application to differential equations. Beginning with a brief introduction to Sobolev spaces and elliptic scalar problems, the text progresses through an explanation of finite element spaces and estimates for the interpolation error. The concepts of finite element methods for parabolic scalar parabolic problems, object-oriented finite element algorithms, efficient implementation techniques, and high dimensional parabolic problems are presented in different chapters. Recent advances in finite element methods, including non-conforming finite elements for boundary value problems of higher order and approaches for solving differential equations in high dimensional domains are explained for the benefit of the reader. Numerous solved examples and mathematical theorems are interspersed throughout the text for enhanced learning |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Jan 2018) |
Beschreibung: | 1 Online-Ressource (208 Seiten) |
ISBN: | 9781108235013 |
DOI: | 10.1017/9781108235013 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV046756335 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 200609s2017 xxk|||| o||u| ||||||eng d | ||
020 | |a 9781108235013 |c Online |9 978-1-108-23501-3 | ||
024 | 7 | |a 10.1017/9781108235013 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781108235013 | ||
035 | |a (OCoLC)1029056845 | ||
035 | |a (DE-599)BVBBV046756335 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxk |c XA-GB | ||
049 | |a DE-12 |a DE-92 | ||
100 | 1 | |a Ganesan, Sashikumaar |d 1976- |e Verfasser |0 (DE-588)128767308 |4 aut | |
245 | 1 | 0 | |a Finite elements |b theory and algorithms |c Sashikumaar Ganesan, Lutz Tobiska |
264 | 1 | |a Cambridge |b Cambridge University Press |c [2017] | |
300 | |a 1 Online-Ressource (208 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge--IISc series | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Jan 2018) | ||
520 | 3 | |a Written in easy to understand language, this self-explanatory guide introduces the fundamentals of finite element methods and its application to differential equations. Beginning with a brief introduction to Sobolev spaces and elliptic scalar problems, the text progresses through an explanation of finite element spaces and estimates for the interpolation error. The concepts of finite element methods for parabolic scalar parabolic problems, object-oriented finite element algorithms, efficient implementation techniques, and high dimensional parabolic problems are presented in different chapters. Recent advances in finite element methods, including non-conforming finite elements for boundary value problems of higher order and approaches for solving differential equations in high dimensional domains are explained for the benefit of the reader. Numerous solved examples and mathematical theorems are interspersed throughout the text for enhanced learning | |
650 | 0 | 7 | |a Finite-Elemente-Methode |0 (DE-588)4017233-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |2 gnd |9 rswk-swf |
653 | 0 | |a Differential equations, Partial | |
653 | 0 | |a Finite element method | |
653 | 0 | |a Differential equations, Partial | |
653 | 0 | |a Finite element method | |
689 | 0 | 0 | |a Finite-Elemente-Methode |0 (DE-588)4017233-8 |D s |
689 | 0 | 1 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Finite-Elemente-Methode |0 (DE-588)4017233-8 |D s |
689 | 1 | 1 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |D s |
689 | 1 | |5 (DE-627) | |
700 | 1 | |a Tobiska, Lutz |d 1950- |e Verfasser |0 (DE-588)109576454 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781108415705 |c : hardback |
856 | 4 | 0 | |u https://doi.org/10.1017/9781108235013 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032165971 | ||
966 | e | |u https://doi.org/10.1017/9781108235013 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108235013 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181519068037120 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Ganesan, Sashikumaar 1976- Tobiska, Lutz 1950- |
author_GND | (DE-588)128767308 (DE-588)109576454 |
author_facet | Ganesan, Sashikumaar 1976- Tobiska, Lutz 1950- |
author_role | aut aut |
author_sort | Ganesan, Sashikumaar 1976- |
author_variant | s g sg l t lt |
building | Verbundindex |
bvnumber | BV046756335 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781108235013 (OCoLC)1029056845 (DE-599)BVBBV046756335 |
doi_str_mv | 10.1017/9781108235013 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03155nmm a2200541 c 4500</leader><controlfield tag="001">BV046756335</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200609s2017 xxk|||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108235013</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-108-23501-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781108235013</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781108235013</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1029056845</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046756335</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxk</subfield><subfield code="c">XA-GB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ganesan, Sashikumaar</subfield><subfield code="d">1976-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)128767308</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Finite elements</subfield><subfield code="b">theory and algorithms</subfield><subfield code="c">Sashikumaar Ganesan, Lutz Tobiska</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (208 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge--IISc series</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Jan 2018)</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Written in easy to understand language, this self-explanatory guide introduces the fundamentals of finite element methods and its application to differential equations. Beginning with a brief introduction to Sobolev spaces and elliptic scalar problems, the text progresses through an explanation of finite element spaces and estimates for the interpolation error. The concepts of finite element methods for parabolic scalar parabolic problems, object-oriented finite element algorithms, efficient implementation techniques, and high dimensional parabolic problems are presented in different chapters. Recent advances in finite element methods, including non-conforming finite elements for boundary value problems of higher order and approaches for solving differential equations in high dimensional domains are explained for the benefit of the reader. Numerous solved examples and mathematical theorems are interspersed throughout the text for enhanced learning</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Finite-Elemente-Methode</subfield><subfield code="0">(DE-588)4017233-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Differential equations, Partial</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Finite element method</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Differential equations, Partial</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Finite element method</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Finite-Elemente-Methode</subfield><subfield code="0">(DE-588)4017233-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Finite-Elemente-Methode</subfield><subfield code="0">(DE-588)4017233-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">(DE-627)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tobiska, Lutz</subfield><subfield code="d">1950-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)109576454</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781108415705</subfield><subfield code="c">: hardback</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781108235013</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032165971</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108235013</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108235013</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046756335 |
illustrated | Not Illustrated |
index_date | 2024-07-03T14:43:11Z |
indexdate | 2024-07-10T08:52:56Z |
institution | BVB |
isbn | 9781108235013 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032165971 |
oclc_num | 1029056845 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 Online-Ressource (208 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge--IISc series |
spelling | Ganesan, Sashikumaar 1976- Verfasser (DE-588)128767308 aut Finite elements theory and algorithms Sashikumaar Ganesan, Lutz Tobiska Cambridge Cambridge University Press [2017] 1 Online-Ressource (208 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge--IISc series Title from publisher's bibliographic system (viewed on 05 Jan 2018) Written in easy to understand language, this self-explanatory guide introduces the fundamentals of finite element methods and its application to differential equations. Beginning with a brief introduction to Sobolev spaces and elliptic scalar problems, the text progresses through an explanation of finite element spaces and estimates for the interpolation error. The concepts of finite element methods for parabolic scalar parabolic problems, object-oriented finite element algorithms, efficient implementation techniques, and high dimensional parabolic problems are presented in different chapters. Recent advances in finite element methods, including non-conforming finite elements for boundary value problems of higher order and approaches for solving differential equations in high dimensional domains are explained for the benefit of the reader. Numerous solved examples and mathematical theorems are interspersed throughout the text for enhanced learning Finite-Elemente-Methode (DE-588)4017233-8 gnd rswk-swf Partielle Differentialgleichung (DE-588)4044779-0 gnd rswk-swf Differential equations, Partial Finite element method Finite-Elemente-Methode (DE-588)4017233-8 s Partielle Differentialgleichung (DE-588)4044779-0 s DE-604 (DE-627) Tobiska, Lutz 1950- Verfasser (DE-588)109576454 aut Erscheint auch als Druck-Ausgabe 9781108415705 : hardback https://doi.org/10.1017/9781108235013 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Ganesan, Sashikumaar 1976- Tobiska, Lutz 1950- Finite elements theory and algorithms Finite-Elemente-Methode (DE-588)4017233-8 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd |
subject_GND | (DE-588)4017233-8 (DE-588)4044779-0 |
title | Finite elements theory and algorithms |
title_auth | Finite elements theory and algorithms |
title_exact_search | Finite elements theory and algorithms |
title_exact_search_txtP | Finite elements theory and algorithms |
title_full | Finite elements theory and algorithms Sashikumaar Ganesan, Lutz Tobiska |
title_fullStr | Finite elements theory and algorithms Sashikumaar Ganesan, Lutz Tobiska |
title_full_unstemmed | Finite elements theory and algorithms Sashikumaar Ganesan, Lutz Tobiska |
title_short | Finite elements |
title_sort | finite elements theory and algorithms |
title_sub | theory and algorithms |
topic | Finite-Elemente-Methode (DE-588)4017233-8 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd |
topic_facet | Finite-Elemente-Methode Partielle Differentialgleichung |
url | https://doi.org/10.1017/9781108235013 |
work_keys_str_mv | AT ganesansashikumaar finiteelementstheoryandalgorithms AT tobiskalutz finiteelementstheoryandalgorithms |