Thermomechanical fatigue of ceramic-matrix composites:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Weinheim
Wiley-VCH
[2020]
|
Schlagworte: | |
Online-Zugang: | http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34637-0/ Inhaltsverzeichnis Inhaltsverzeichnis |
Beschreibung: | x, 480 Seiten Illustrationen, Diagramme 25 cm, 1118 g |
ISBN: | 9783527346370 3527346376 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV046733937 | ||
003 | DE-604 | ||
005 | 20201021 | ||
007 | t | ||
008 | 200525s2020 gw a||| |||| 00||| eng d | ||
015 | |a 19,N22 |2 dnb | ||
015 | |a 20,A07 |2 dnb | ||
020 | |a 9783527346370 |c Festeinband : circa EUR 159.00 (DE) (freier Preis) |9 978-3-527-34637-0 | ||
020 | |a 3527346376 |9 3-527-34637-6 | ||
024 | 3 | |a 9783527346370 | |
035 | |a (OCoLC)1102642562 | ||
035 | |a (DE-599)DNB1186992387 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BW | ||
049 | |a DE-83 |a DE-703 | ||
082 | 0 | |a 620.140426 |2 23/ger | |
084 | |a ZM 7024 |0 (DE-625)157101: |2 rvk | ||
084 | |a UQ 8420 |0 (DE-625)146597: |2 rvk | ||
084 | |a 620 |2 sdnb | ||
084 | |a 660 |2 sdnb | ||
100 | 1 | |a Li, Longbiao |e Verfasser |0 (DE-588)1199153478 |4 aut | |
245 | 1 | 0 | |a Thermomechanical fatigue of ceramic-matrix composites |c Longbiao Li |
264 | 1 | |a Weinheim |b Wiley-VCH |c [2020] | |
264 | 4 | |c © 2020 | |
300 | |a x, 480 Seiten |b Illustrationen, Diagramme |c 25 cm, 1118 g | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Werkstoffschädigung |0 (DE-588)4284135-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Keramischer Werkstoff |0 (DE-588)4030282-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Materialermüdung |0 (DE-588)4074631-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Verbundwerkstoff |0 (DE-588)4062670-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zyklische Belastung |0 (DE-588)7560628-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mechanische Beanspruchung |0 (DE-588)4196812-8 |2 gnd |9 rswk-swf |
653 | |a Bauingenieur- u. Bauwesen | ||
653 | |a Baustoffe | ||
653 | |a Bruchmechanik | ||
653 | |a Ceramics | ||
653 | |a Civil Engineering & Construction | ||
653 | |a Construction Materials | ||
653 | |a Failure Fracture | ||
653 | |a Keramische Werkstoffe | ||
653 | |a Keramischer Werkstoff | ||
653 | |a Maschinenbau | ||
653 | |a Materials Science | ||
653 | |a Materialwissenschaften | ||
653 | |a Mechanical Engineering | ||
653 | |a CE11: Baustoffe | ||
653 | |a ME60: Bruchmechanik | ||
653 | |a MS20: Keramische Werkstoffe | ||
689 | 0 | 0 | |a Keramischer Werkstoff |0 (DE-588)4030282-9 |D s |
689 | 0 | 1 | |a Verbundwerkstoff |0 (DE-588)4062670-2 |D s |
689 | 0 | 2 | |a Mechanische Beanspruchung |0 (DE-588)4196812-8 |D s |
689 | 0 | 3 | |a Zyklische Belastung |0 (DE-588)7560628-8 |D s |
689 | 0 | 4 | |a Materialermüdung |0 (DE-588)4074631-8 |D s |
689 | 0 | 5 | |a Werkstoffschädigung |0 (DE-588)4284135-5 |D s |
689 | 0 | |5 DE-604 | |
710 | 2 | |a Wiley-VCH |0 (DE-588)16179388-5 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 978-3-527-82259-1 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-3-527-82260-7 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-527-82261-4 |
856 | 4 | 2 | |m X:MVB |u http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34637-0/ |
856 | 4 | 2 | |m B:DE-101 |q application/pdf |u https://d-nb.info/1186992387/04 |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032143970&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-032143970 |
Datensatz im Suchindex
_version_ | 1804181481570959360 |
---|---|
adam_text | CONTENTS
1
CYCLIC
LOADING/UNLOADING
TENSILE
FATIGUE
OF
CERAMIC-MATRIX
COMPOSITES
1
1.1
INTRODUCTION
1
1.2
UNIDIRECTIONAL
CERAMIC-MATRIX
COMPOSITES
2
1.2.1
MATERIALS
AND
EXPERIMENTAL
PROCEDURES
3
1.2.1.1
C/SIC
COMPOSITE
3
1.2.1.2
C/SI
3
N
4
AND
SIC/SI
3
N
4
COMPOSITES
3
1.2.1.3
SIC/CAS
COMPOSITE
4
1.2.2
THEORETICAL
ANALYSIS
4
1.2.2.1
STRESS
ANALYSIS
4
1.2.2.2
MATRIX
CRACKING
6
1.2.2.3
INTERFACE
DEBONDING
7
1.2.2.4
FIBER
FAILURE
8
1.2.2.5
HYSTERESIS
THEORIES
9
1.2.3
RESULTS
AND
DISCUSSION
13
1.2.3.1
EFFECT
OF
FIBER
VOLUME
FRACTION
ON
FATIGUE
HYSTERESIS
LOOPS
AND
FATIGUE
HYSTERESIS-BASED
DAMAGE
PARAMETERS
13
1.2.3.2
EFFECT
OF
MATRIX
CRACKING
DENSITY
ON
FATIGUE
HYSTERESIS
LOOPS
AND
FATIGUE
HYSTERESIS-BASED
DAMAGE
PARAMETERS
15
1.2.3.3
EFFECT
OF
FIBER/MATRIX
INTERFACE
SHEAR
STRESS
ON
FATIGUE
HYSTERESIS
LOOPS
AND
FATIGUE
HYSTERESIS-BASED
DAMAGE
PARAMETERS
16
1.2.3.4
EFFECT
OF
FIBER/MATRIX
INTERFACE
DEBONDED
ENERGY
ON
FATIGUE
HYSTERESIS
LOOPS
AND
FATIGUE
HYSTERESIS-BASED
DAMAGE
PARAMETERS
20
1.2.3.5
EFFECT
OF
FIBER
FAILURE
ON
FATIGUE
HYSTERESIS
LOOPS
AND
FATIGUE
HYSTERESIS-BASED
DAMAGE
PARAMETERS
22
1.2.4
EXPERIMENTAL
COMPARISONS
24
1.2.4.1
C/SIC
COMPOSITE
24
1.2.4.2
C/SI
3
N
4
COMPOSITE
30
1.2.4.3
SIC/SI
3
N
4
COMPOSITE
33
1.2.4.4
SIC/CAS
COMPOSITE
38
1.3
CROSS-PLY
AND
2D
WOVEN
CERAMIC-MATRIX
COMPOSITES
43
1.3.1
MATERIALS
AND
EXPERIMENTAL
PROCEDURES
47
1.3.1.1
C/SIC
COMPOSITE
47
VI
CONTENTS
1.3.1.2
SIC/SIC
COMPOSITE
48
1.3.2
THEORETICAL
ANALYSIS
49
1.3.2.1
STRESS
ANALYSIS
49
1.3.2.2
TRANSVERSE
AND
MATRIX
CRACKING
58
1.3.2.3
INTERFACE
DEBONDING
60
1.3.2.4
HYSTERESIS
THEORIES
62
1.3.3
RESULTS
AND
DISCUSSIONS
75
1.3.3.1
EFFECT
OF
FIBER VOLUME
FRACTION
ON
THE
INTERFACE
SLIDING
AND
FATIGUE
HYSTERESIS
LOOPS
75
1.3.3.2
EFFECT
OF
FATIGUE
PEAK
STRESS
ON
THE
INTERFACE
SLIDING
AND
FATIGUE
HYSTERESIS
LOOPS
77
1.3.3.3
EFFECT
OF
MATRIX
CRACK
SPACING
ON
THE
INTERFACE
SLIDING
AND
FATIGUE
HYSTERESIS
LOOPS
79
1.3.3.4
EFFECT
OF
INTERFACE
PROPERTIES
ON
THE
INTERFACE
SLIDING
AND
FATIGUE
HYSTERESIS
LOOPS
81
1.3.3.5
EFFECT
OF
MATRIX
RACKING
MODE
PROPORTION
ON
INTERFACE
SLIDING
AND
FATIGUE
HYSTERESIS
LOOPS
85
1.3.4
EXPERIMENTAL
COMPARISONS
87
1.3.4.1
CROSS-PLY
C/SIC
COMPOSITE
87
1.3.4.2
2D
SIC/SIC
COMPOSITE
94
1.4
2.5D
AND
3D
CERAMIC-MATRIX
COMPOSITES
103
1.4.1
MATERIALS
AND
EXPERIMENTAL
PROCEDURES
104
1.4.1.1
2.5D
C/SIC
COMPOSITE
104
1.4.1.2
3D
BRAIDED
C/SIC
COMPOSITE
104
1.4.1.3
3D
NEEDLED
C/SIC
COMPOSITE
105
1.4.2
HYSTERESIS
THEORIES
105
1.4.2.1
INTERFACE
SLIP
CASE
1
105
1.4.2.2
INTERFACE
SLIP
CASE
2
106
1.4.2.3
INTERFACE
SLIP
CASE
3
107
1.4.2.4
HYSTERESIS
LOOPS
107
1.4.3
EXPERIMENTAL
COMPARISONS
108
1.4.3.1
2.5D
C/SIC
COMPOSITE
108
1.4.3.2
3D
BRAIDED
C/SIC
COMPOSITE
110
1.4.3.3
3D
NEEDLED
C/SIC
COMPOSITE
112
1.5
CONCLUSIONS
112
REFERENCES
112
2
CYCLIC
FATIGUE
BEHAVIORS
OF
CERAMIC-MATRIX
COMPOSITES
117
2.1
INTRODUCTION
117
2.2
MATERIALS
AND
EXPERIMENTAL
PROCEDURES
117
2.2.1
UNIDIRECTIONAL
C/SIC
COMPOSITE
117
2.2.2
CROSS-PLY
C/SIC
COMPOSITE
118
2.2.3
2D
SIC/SIC
COMPOSITE
AT
1000
C
119
2.2.4
2D
SIC/SIC
COMPOSITE
AT
1200
C
120
2.2.5
2D
SIC/SIC
COMPOSITE
AT
1300
C
120
2.2.6
3D
SIC/SIC
COMPOSITE
AT
1300
C
121
2.3
HYSTERESIS-BASED
DAMAGE
PARAMETERS
121
CONTENTS
VII
2.4
2.4.1
2.4.2
2.4.3
2.4.4
2.4.5
2.4.6
2.5
2.5.1
2.5.1.1
2.5.1.2
2.5.1.3
2.5.1.4
2.5.1.5
2.5.2
2.5.2.1
2.5.2.2
2.5.2.3
2.5.2.4
2.5.3
2.5.3.1
2.5.3.2
2.5.3.3
2.5.3.4
2.5.4
2.6
2.6.1
2.6.2
2.6.3
2.7
RESULTS
AND
DISCUSSIONS
122
EFFECTS
OF
FIBER VOLUME
FRACTION
ON
FATIGUE
DAMAGE
EVOLUTION
123
EFFECTS
OF
FATIGUE
PEAK
STRESS
ON
FATIGUE
DAMAGE
EVOLUTION
125
EFFECTS
OF
FATIGUE
STRESS
RATIO
ON
FATIGUE
DAMAGE
EVOLUTION
127
EFFECTS
OF
MATRIX
CRACK
SPACING
ON
FATIGUE
DAMAGE
EVOLUTION
128
EFFECTS
OF
MATRIX
CRACK
MODE
ON
FATIGUE
DAMAGE
EVOLUTION
129
EFFECTS
OF
WOVEN
STRUCTURE
ON
FATIGUE
DAMAGE
EVOLUTION
133
EXPERIMENTAL
COMPARISONS
135
UNIDIRECTIONAL
CMCS
135
SIC/CAS
COMPOSITE
AT
ROOM
TEMPERATURE
135
SIC/CAS-II
COMPOSITE
AT
ROOM
TEMPERATURE
137
SIC/1723
COMPOSITE
AT
ROOM
TEMPERATURE
140
C/SIC
COMPOSITE
AT
ROOM
TEMPERATURE
143
C/SIC
COMPOSITE
AT
ELEVATED
TEMPERATURE
147
CROSS-PLY
CMCS
152
SIC/CAS
COMPOSITE
AT
ROOM
TEMPERATURE
152
C/SIC
COMPOSITE
AT
ROOM
TEMPERATURE
155
C/SIC
COMPOSITE
AT
800
C
IN
AIR
ATMOSPHERE
156
SIC/MAS-L
COMPOSITE
AT
800
AND
1000
C
IN
INERT
ATMOSPHERE
158
2D
CMCS
158
SIC/SIC
COMPOSITE
AT
600,
800,
AND
1000
C
IN
INERT
ATMOSPHERE
158
SIC/SIC
COMPOSITE
AT
1000
C
IN
AIR
AND
IN
STEAM
ATMOSPHERES
164
SIC/SIC
COMPOSITE
AT
1200
C
IN
AIR
AND
IN
STEAM
ATMOSPHERES
191
SIC/SIC
COMPOSITE
AT
1300
C
IN
AIR
ATMOSPHERE
209
3D
BRAIDED
CMCS
226
DISCUSSIONS
229
CYCLIC
FATIGUE
AT
ROOM
TEMPERATURE
229
CYCLIC
FATIGUE
AT
ELEVATED
TEMPERATURE
233
COMPARISON
ANALYSIS
238
CONCLUSIONS
245
REFERENCES
246
3
3.1
3.2
3.2.1
3.2.2
3.3
3.3.1
3.3.2
3.3.3
DWELL-FATIGUE
BEHAVIOR
OF
CERAMIC-MATRIX
COMPOSITES
249
INTRODUCTION
249
THEORETICAL
ANALYSIS
251
DWELL-FATIGUE
DAMAGE
EVOLUTION
MODEL
253
DWELL-FATIGUE
LIFETIME
PREDICTION
MODEL
256
RESULTS
AND
DISCUSSIONS
258
EFFECTS
OF
HOLD
TIME
ON
DWELL
FATIGUE
DAMAGE
EVOLUTION
258
EFFECTS
OF
STRESS
LEVEL
ON
DWELL
FATIGUE
DAMAGE
EVOLUTION
263
EFFECTS
OF
MATRIX
CRACK
SPACING
ON
DWELL
FATIGUE
DAMAGE
EVOLUTION
268
3.3.4
EFFECTS
OF
FIBER
VOLUME
FRACTION ON
DWELL
FATIGUE
DAMAGE
EVOLUTION
272
3.3.5
EFFECTS
OF
OXIDATION
TEMPERATURE
ON
DWELL
FATIGUE
DAMAGE
EVOLUTION
276
3.4
EXPERIMENTAL
COMPARISONS
280
VIII
I
CONTENTS
3.4.1
CROSS-PLY
SIC/MAS
COMPOSITE
280
3.4.1.1
566
C
IN
AIR
ATMOSPHERE
280
3.4.1.2
1093
C
IN
AIR
ATMOSPHERE
288
3.4.1.3
COMPARISON
ANALYSIS
296
3.4.2
2D
SIC/SIC
COMPOSITE
301
3.4.3
2D
NEXTEL
720/ALUMINA
COMPOSITE
303
3.5
CONCLUSIONS
304
REFERENCES
305
4
THERMOMECHANICAL
FATIGUE
BEHAVIORS
OF
CERAMIC-MATRIX
COMPOSITES
309
4.1
INTRODUCTION
309
4.2
THEORETICAL
ANALYSIS
310
4.2.1
THERMOMECHANICAL
STRESS
ANALYSIS
310
4.2.2
THERMOMECHANICAL
DAMAGE
PARAMETERS
312
4.3
THERMOMECHANICAL
FATIGUE
HYSTERESIS
LOOPS
313
4.3.1
RESULTS
AND
DISCUSSIONS
313
4.3.1.1
EFFECTS
OF
FIBER
VOLUME
FRACTION
ON
THE
THERMOMECHANICAL
FATIGUE
HYSTERESIS
LOOPS
AND
FIBER/MATRIX
INTERFACE
SLIDING
313
4.3.1.2
EFFECTS
OF
FATIGUE
PEAK
STRESS
ON
THE
THERMOMECHANICAL
FATIGUE
HYSTERESIS
LOOPS
AND
FIBER/MATRIX
INTERFACE
SLIDING
317
4.3.1.3
EFFECTS
OF
MATRIX
CRACK
SPACING
ON
THE
THERMOMECHANICAL
FATIGUE
HYSTERESIS
LOOPS
AND
FIBER/MATRIX
INTERFACE
SLIDING
321
4.3.1.4
EFFECTS
OF
FIBER/MATRIX
INTERFACE
FRICTIONAL
COEFFICIENT
ON
THE
THERMOMECHANICAL
FATIGUE
HYSTERESIS
LOOPS
AND
FIBER/MATRIX
INTERFACE
SLIDING
325
4.3.1.5
EFFECTS
OF
INTERFACE
DEBONDED
ENERGY
ON
THE
THERMOMECHANICAL
FATIGUE
HYSTERESIS
LOOPS
AND
FIBER/MATRIX
INTERFACE
SLIDING
328
4.3.1.6
EFFECTS
OF
THERMAL
CYCLIC
TEMPERATURE
RANGE
ON
THE
THERMOMECHANICAL
FATIGUE
HYSTERESIS
LOOPS
AND
FIBER/MATRIX
INTERFACE
SLIDING
332
4.3.2
EXPERIMENTAL
COMPARISONS
336
4.3.2.1
ISOTHERMAL
FATIGUE
HYSTERESIS
LOOPS
336
4.3.2.2
IN-PHASE
THERMOMECHANICAL
FATIGUE
HYSTERESIS
LOOPS
341
4.3.2.3
OUT-OF-PHASE
THERMOMECHANICAL
FATIGUE
HYSTERESIS
LOOPS
344
4.4
IN-PHASE
THERMOMECHANICAL
FATIGUE
DAMAGE
345
4.4.1
RESULTS
AND
DISCUSSIONS
347
4.4.1.1
EFFECTS
OF
FIBER
VOLUME
FRACTION
ON
IN-PHASE
THERMOMECHANICAL
FATIGUE
DAMAGE
EVOLUTION
348
4.4.1.2
EFFECTS
OF
FATIGUE
PEAK
STRESS
ON
IN-PHASE
THERMOMECHANICAL
FATIGUE
DAMAGE
EVOLUTION
354
4.4.1.3
EFFECTS
OF
MATRIX
STOCHASTIC
CRACKING
ON
IN-PHASE
THERMOMECHANICAL
FATIGUE
DAMAGE
EVOLUTION
357
4.4.1.4
EFFECTS
OF
INTERFACE
PROPERTIES
ON
IN-PHASE
THERMOMECHANICAL
FATIGUE
DAMAGE
EVOLUTION
361
4.4.1.5
EFFECTS
OF
THERMAL
CYCLIC
TEMPERATURE
RANGE
ON
IN-PHASE
THERMOMECHANICAL
FATIGUE
DAMAGE
EVOLUTION
365
CONTENTS
IX
4.4.1.6
COMPARISONS
BETWEEN
IN-PHASE
THERMOMECHANICAL
AND
ISOTHERMAL
FATIGUE
LOADING
368
4.4.2
EXPERIMENTAL
COMPARISONS
370
4.4.2.1
THERMOMECHANICAL
FATIGUE
LOADING
371
4.4.2.2
ISOTHERMAL
FATIGUE
LOADING
372
4.5
OUT-OF-PHASE
THERMOMECHANICAL
FATIGUE
373
4.5.1
RESULTS
AND
DISCUSSIONS
374
4.5.1.1
EFFECTS
OF
FIBER VOLUME
FRACTION
ON
OUT-OF-PHASE
THERMOMECHANICAL
FATIGUE
DAMAGE
EVOLUTION
374
4.5.1.2
EFFECTS
OF
FATIGUE
PEAK
STRESS
ON
OUT-OF-PHASE
THERMOMECHANICAL
FATIGUE
DAMAGE
EVOLUTION
379
4.5.1.3
EFFECTS
OF
MATRIX
CRACK
SPACING
ON
OUT-OF-PHASE
THERMOMECHANICAL
FATIGUE
DAMAGE
EVOLUTION
383
4.5.1.4
EFFECTS
OF
INTERFACE
FRICTIONAL
COEFFICIENT
ON
OUT-OF-PHASE
THERMOMECHANICAL
FATIGUE
DAMAGE
EVOLUTION
386
4.5.1.5
EFFECTS
OF
THERMAL
CYCLIC
TEMPERATURE
RANGE
OUT-OF-PHASE
THERMOMECHANICAL
FATIGUE
DAMAGE
EVOLUTION
390
4.5.1.6
COMPARISONS
BETWEEN
IN-PHASE/OUT-OF-PHASE
THERMOMECHANICAL
FATIGUE
AND
ISOTHERMAL
FATIGUE
LOADING
393
4.5.2
EXPERIMENTAL
COMPARISONS
397
4.5.2.1
OUT-OF-PHASE
THERMOMECHANICAL
FATIGUE
LOADING
AT
THE
TEMPERATURE
RANGE
FROM
566
TO
1093
C
397
4.5.2.2
ISOTHERMAL
FATIGUE
LOADING
AT
566
C
399
4.5.2.3
ISOTHERMAL
FATIGUE
LOADING
AT
1093
C
401
4.6
THERMOMECHANICAL
FATIGUE
WITH
DIFFERENT
PHASE
ANGLES
403
4.6.1
RESULTS
AND
DISCUSSIONS
403
4.6.1.1
EFFECTS
OF
FIBER
VOLUME
FRACTION
ON
THERMOMECHANICAL
FATIGUE
DAMAGE
EVOLUTION
408
4.6.1.2
EFFECTS
OF
FATIGUE
PEAK
STRESS
ON
THERMOMECHANICAL
FATIGUE
DAMAGE
EVOLUTION
416
4.6.1.3
EFFECTS
OF
MATRIX
CRACK
SPACING
ON
THERMOMECHANICAL
FATIGUE
DAMAGE
EVOLUTION
426
4.6.2
EXPERIMENTAL
COMPARISONS
432
4.6.2.1
IN-PHASE
THERMOMECHANICAL
FATIGUE
433
4.6.2.2
OUT-OF-PHASE
THERMOMECHANICAL
FATIGUE
433
4.7
CONCLUSIONS
434
REFERENCES
434
5
INTERFACE
DEGRADATION
OF
CERAMIC-MATRIX
COMPOSITES
UNDER
THERMOMECHANICAL
FATIGUE
LOADING
437
5.1
INTRODUCTION
437
5.2
INTERFACE
DEGRADATION
MODELS
438
5.2.1
INTERFACE
SLIP
CASE
1
438
5.2.2
INTERFACE
SLIP
CASE
2
439
5.2.3
INTERFACE
SLIP
CASE
3
439
5.2.4
INTERFACE
SLIP
CASE
4
440
5.2.5
HYSTERESIS
LOOPS
AND
HYSTERESIS-BASED
DAMAGE
PARAMETERS
441
X
CONTENTS
5.3
EXPERIMENTAL
COMPARISONS
445
5.3.1
UNIDIRECTIONAL
C/SIC
COMPOSITE
445
5.3.1.1
ROOM
TEMPERATURE
445
5.3.1.2
ELEVATED
TEMPERATURE
451
5.3.1.3
COMPARISON
ANALYSIS
456
5.3.2
UNIDIRECTIONAL
SIC/SI
3
N
4
COMPOSITE
457
5.3.2.1
ROOM
TEMPERATURE
457
5.3.2.2
ELEVATED
TEMPERATURE
461
5.3.2.3
COMPARISON
ANALYSIS
467
5.3.3
2D
SIC/SIC
COMPOSITE
468
5.3.3.1
ROOM
TEMPERATURE
468
53.3.2
ELEVATED
TEMPERATURE
470
5.3.3.3
COMPARISON
ANALYSIS
472
5.4
CONCLUSIONS
473
REFERENCES
474
INDEX
475
|
adam_txt |
CONTENTS
1
CYCLIC
LOADING/UNLOADING
TENSILE
FATIGUE
OF
CERAMIC-MATRIX
COMPOSITES
1
1.1
INTRODUCTION
1
1.2
UNIDIRECTIONAL
CERAMIC-MATRIX
COMPOSITES
2
1.2.1
MATERIALS
AND
EXPERIMENTAL
PROCEDURES
3
1.2.1.1
C/SIC
COMPOSITE
3
1.2.1.2
C/SI
3
N
4
AND
SIC/SI
3
N
4
COMPOSITES
3
1.2.1.3
SIC/CAS
COMPOSITE
4
1.2.2
THEORETICAL
ANALYSIS
4
1.2.2.1
STRESS
ANALYSIS
4
1.2.2.2
MATRIX
CRACKING
6
1.2.2.3
INTERFACE
DEBONDING
7
1.2.2.4
FIBER
FAILURE
8
1.2.2.5
HYSTERESIS
THEORIES
9
1.2.3
RESULTS
AND
DISCUSSION
13
1.2.3.1
EFFECT
OF
FIBER
VOLUME
FRACTION
ON
FATIGUE
HYSTERESIS
LOOPS
AND
FATIGUE
HYSTERESIS-BASED
DAMAGE
PARAMETERS
13
1.2.3.2
EFFECT
OF
MATRIX
CRACKING
DENSITY
ON
FATIGUE
HYSTERESIS
LOOPS
AND
FATIGUE
HYSTERESIS-BASED
DAMAGE
PARAMETERS
15
1.2.3.3
EFFECT
OF
FIBER/MATRIX
INTERFACE
SHEAR
STRESS
ON
FATIGUE
HYSTERESIS
LOOPS
AND
FATIGUE
HYSTERESIS-BASED
DAMAGE
PARAMETERS
16
1.2.3.4
EFFECT
OF
FIBER/MATRIX
INTERFACE
DEBONDED
ENERGY
ON
FATIGUE
HYSTERESIS
LOOPS
AND
FATIGUE
HYSTERESIS-BASED
DAMAGE
PARAMETERS
20
1.2.3.5
EFFECT
OF
FIBER
FAILURE
ON
FATIGUE
HYSTERESIS
LOOPS
AND
FATIGUE
HYSTERESIS-BASED
DAMAGE
PARAMETERS
22
1.2.4
EXPERIMENTAL
COMPARISONS
24
1.2.4.1
C/SIC
COMPOSITE
24
1.2.4.2
C/SI
3
N
4
COMPOSITE
30
1.2.4.3
SIC/SI
3
N
4
COMPOSITE
33
1.2.4.4
SIC/CAS
COMPOSITE
38
1.3
CROSS-PLY
AND
2D
WOVEN
CERAMIC-MATRIX
COMPOSITES
43
1.3.1
MATERIALS
AND
EXPERIMENTAL
PROCEDURES
47
1.3.1.1
C/SIC
COMPOSITE
47
VI
CONTENTS
1.3.1.2
SIC/SIC
COMPOSITE
48
1.3.2
THEORETICAL
ANALYSIS
49
1.3.2.1
STRESS
ANALYSIS
49
1.3.2.2
TRANSVERSE
AND
MATRIX
CRACKING
58
1.3.2.3
INTERFACE
DEBONDING
60
1.3.2.4
HYSTERESIS
THEORIES
62
1.3.3
RESULTS
AND
DISCUSSIONS
75
1.3.3.1
EFFECT
OF
FIBER VOLUME
FRACTION
ON
THE
INTERFACE
SLIDING
AND
FATIGUE
HYSTERESIS
LOOPS
75
1.3.3.2
EFFECT
OF
FATIGUE
PEAK
STRESS
ON
THE
INTERFACE
SLIDING
AND
FATIGUE
HYSTERESIS
LOOPS
77
1.3.3.3
EFFECT
OF
MATRIX
CRACK
SPACING
ON
THE
INTERFACE
SLIDING
AND
FATIGUE
HYSTERESIS
LOOPS
79
1.3.3.4
EFFECT
OF
INTERFACE
PROPERTIES
ON
THE
INTERFACE
SLIDING
AND
FATIGUE
HYSTERESIS
LOOPS
81
1.3.3.5
EFFECT
OF
MATRIX
RACKING
MODE
PROPORTION
ON
INTERFACE
SLIDING
AND
FATIGUE
HYSTERESIS
LOOPS
85
1.3.4
EXPERIMENTAL
COMPARISONS
87
1.3.4.1
CROSS-PLY
C/SIC
COMPOSITE
87
1.3.4.2
2D
SIC/SIC
COMPOSITE
94
1.4
2.5D
AND
3D
CERAMIC-MATRIX
COMPOSITES
103
1.4.1
MATERIALS
AND
EXPERIMENTAL
PROCEDURES
104
1.4.1.1
2.5D
C/SIC
COMPOSITE
104
1.4.1.2
3D
BRAIDED
C/SIC
COMPOSITE
104
1.4.1.3
3D
NEEDLED
C/SIC
COMPOSITE
105
1.4.2
HYSTERESIS
THEORIES
105
1.4.2.1
INTERFACE
SLIP
CASE
1
105
1.4.2.2
INTERFACE
SLIP
CASE
2
106
1.4.2.3
INTERFACE
SLIP
CASE
3
107
1.4.2.4
HYSTERESIS
LOOPS
107
1.4.3
EXPERIMENTAL
COMPARISONS
108
1.4.3.1
2.5D
C/SIC
COMPOSITE
108
1.4.3.2
3D
BRAIDED
C/SIC
COMPOSITE
110
1.4.3.3
3D
NEEDLED
C/SIC
COMPOSITE
112
1.5
CONCLUSIONS
112
REFERENCES
112
2
CYCLIC
FATIGUE
BEHAVIORS
OF
CERAMIC-MATRIX
COMPOSITES
117
2.1
INTRODUCTION
117
2.2
MATERIALS
AND
EXPERIMENTAL
PROCEDURES
117
2.2.1
UNIDIRECTIONAL
C/SIC
COMPOSITE
117
2.2.2
CROSS-PLY
C/SIC
COMPOSITE
118
2.2.3
2D
SIC/SIC
COMPOSITE
AT
1000
C
119
2.2.4
2D
SIC/SIC
COMPOSITE
AT
1200
C
120
2.2.5
2D
SIC/SIC
COMPOSITE
AT
1300
C
120
2.2.6
3D
SIC/SIC
COMPOSITE
AT
1300
C
121
2.3
HYSTERESIS-BASED
DAMAGE
PARAMETERS
121
CONTENTS
VII
2.4
2.4.1
2.4.2
2.4.3
2.4.4
2.4.5
2.4.6
2.5
2.5.1
2.5.1.1
2.5.1.2
2.5.1.3
2.5.1.4
2.5.1.5
2.5.2
2.5.2.1
2.5.2.2
2.5.2.3
2.5.2.4
2.5.3
2.5.3.1
2.5.3.2
2.5.3.3
2.5.3.4
2.5.4
2.6
2.6.1
2.6.2
2.6.3
2.7
RESULTS
AND
DISCUSSIONS
122
EFFECTS
OF
FIBER VOLUME
FRACTION
ON
FATIGUE
DAMAGE
EVOLUTION
123
EFFECTS
OF
FATIGUE
PEAK
STRESS
ON
FATIGUE
DAMAGE
EVOLUTION
125
EFFECTS
OF
FATIGUE
STRESS
RATIO
ON
FATIGUE
DAMAGE
EVOLUTION
127
EFFECTS
OF
MATRIX
CRACK
SPACING
ON
FATIGUE
DAMAGE
EVOLUTION
128
EFFECTS
OF
MATRIX
CRACK
MODE
ON
FATIGUE
DAMAGE
EVOLUTION
129
EFFECTS
OF
WOVEN
STRUCTURE
ON
FATIGUE
DAMAGE
EVOLUTION
133
EXPERIMENTAL
COMPARISONS
135
UNIDIRECTIONAL
CMCS
135
SIC/CAS
COMPOSITE
AT
ROOM
TEMPERATURE
135
SIC/CAS-II
COMPOSITE
AT
ROOM
TEMPERATURE
137
SIC/1723
COMPOSITE
AT
ROOM
TEMPERATURE
140
C/SIC
COMPOSITE
AT
ROOM
TEMPERATURE
143
C/SIC
COMPOSITE
AT
ELEVATED
TEMPERATURE
147
CROSS-PLY
CMCS
152
SIC/CAS
COMPOSITE
AT
ROOM
TEMPERATURE
152
C/SIC
COMPOSITE
AT
ROOM
TEMPERATURE
155
C/SIC
COMPOSITE
AT
800
C
IN
AIR
ATMOSPHERE
156
SIC/MAS-L
COMPOSITE
AT
800
AND
1000
C
IN
INERT
ATMOSPHERE
158
2D
CMCS
158
SIC/SIC
COMPOSITE
AT
600,
800,
AND
1000
C
IN
INERT
ATMOSPHERE
158
SIC/SIC
COMPOSITE
AT
1000
C
IN
AIR
AND
IN
STEAM
ATMOSPHERES
164
SIC/SIC
COMPOSITE
AT
1200
C
IN
AIR
AND
IN
STEAM
ATMOSPHERES
191
SIC/SIC
COMPOSITE
AT
1300
C
IN
AIR
ATMOSPHERE
209
3D
BRAIDED
CMCS
226
DISCUSSIONS
229
CYCLIC
FATIGUE
AT
ROOM
TEMPERATURE
229
CYCLIC
FATIGUE
AT
ELEVATED
TEMPERATURE
233
COMPARISON
ANALYSIS
238
CONCLUSIONS
245
REFERENCES
246
3
3.1
3.2
3.2.1
3.2.2
3.3
3.3.1
3.3.2
3.3.3
DWELL-FATIGUE
BEHAVIOR
OF
CERAMIC-MATRIX
COMPOSITES
249
INTRODUCTION
249
THEORETICAL
ANALYSIS
251
DWELL-FATIGUE
DAMAGE
EVOLUTION
MODEL
253
DWELL-FATIGUE
LIFETIME
PREDICTION
MODEL
256
RESULTS
AND
DISCUSSIONS
258
EFFECTS
OF
HOLD
TIME
ON
DWELL
FATIGUE
DAMAGE
EVOLUTION
258
EFFECTS
OF
STRESS
LEVEL
ON
DWELL
FATIGUE
DAMAGE
EVOLUTION
263
EFFECTS
OF
MATRIX
CRACK
SPACING
ON
DWELL
FATIGUE
DAMAGE
EVOLUTION
268
3.3.4
EFFECTS
OF
FIBER
VOLUME
FRACTION ON
DWELL
FATIGUE
DAMAGE
EVOLUTION
272
3.3.5
EFFECTS
OF
OXIDATION
TEMPERATURE
ON
DWELL
FATIGUE
DAMAGE
EVOLUTION
276
3.4
EXPERIMENTAL
COMPARISONS
280
VIII
I
CONTENTS
3.4.1
CROSS-PLY
SIC/MAS
COMPOSITE
280
3.4.1.1
566
C
IN
AIR
ATMOSPHERE
280
3.4.1.2
1093
C
IN
AIR
ATMOSPHERE
288
3.4.1.3
COMPARISON
ANALYSIS
296
3.4.2
2D
SIC/SIC
COMPOSITE
301
3.4.3
2D
NEXTEL
720/ALUMINA
COMPOSITE
303
3.5
CONCLUSIONS
304
REFERENCES
305
4
THERMOMECHANICAL
FATIGUE
BEHAVIORS
OF
CERAMIC-MATRIX
COMPOSITES
309
4.1
INTRODUCTION
309
4.2
THEORETICAL
ANALYSIS
310
4.2.1
THERMOMECHANICAL
STRESS
ANALYSIS
310
4.2.2
THERMOMECHANICAL
DAMAGE
PARAMETERS
312
4.3
THERMOMECHANICAL
FATIGUE
HYSTERESIS
LOOPS
313
4.3.1
RESULTS
AND
DISCUSSIONS
313
4.3.1.1
EFFECTS
OF
FIBER
VOLUME
FRACTION
ON
THE
THERMOMECHANICAL
FATIGUE
HYSTERESIS
LOOPS
AND
FIBER/MATRIX
INTERFACE
SLIDING
313
4.3.1.2
EFFECTS
OF
FATIGUE
PEAK
STRESS
ON
THE
THERMOMECHANICAL
FATIGUE
HYSTERESIS
LOOPS
AND
FIBER/MATRIX
INTERFACE
SLIDING
317
4.3.1.3
EFFECTS
OF
MATRIX
CRACK
SPACING
ON
THE
THERMOMECHANICAL
FATIGUE
HYSTERESIS
LOOPS
AND
FIBER/MATRIX
INTERFACE
SLIDING
321
4.3.1.4
EFFECTS
OF
FIBER/MATRIX
INTERFACE
FRICTIONAL
COEFFICIENT
ON
THE
THERMOMECHANICAL
FATIGUE
HYSTERESIS
LOOPS
AND
FIBER/MATRIX
INTERFACE
SLIDING
325
4.3.1.5
EFFECTS
OF
INTERFACE
DEBONDED
ENERGY
ON
THE
THERMOMECHANICAL
FATIGUE
HYSTERESIS
LOOPS
AND
FIBER/MATRIX
INTERFACE
SLIDING
328
4.3.1.6
EFFECTS
OF
THERMAL
CYCLIC
TEMPERATURE
RANGE
ON
THE
THERMOMECHANICAL
FATIGUE
HYSTERESIS
LOOPS
AND
FIBER/MATRIX
INTERFACE
SLIDING
332
4.3.2
EXPERIMENTAL
COMPARISONS
336
4.3.2.1
ISOTHERMAL
FATIGUE
HYSTERESIS
LOOPS
336
4.3.2.2
IN-PHASE
THERMOMECHANICAL
FATIGUE
HYSTERESIS
LOOPS
341
4.3.2.3
OUT-OF-PHASE
THERMOMECHANICAL
FATIGUE
HYSTERESIS
LOOPS
344
4.4
IN-PHASE
THERMOMECHANICAL
FATIGUE
DAMAGE
345
4.4.1
RESULTS
AND
DISCUSSIONS
347
4.4.1.1
EFFECTS
OF
FIBER
VOLUME
FRACTION
ON
IN-PHASE
THERMOMECHANICAL
FATIGUE
DAMAGE
EVOLUTION
348
4.4.1.2
EFFECTS
OF
FATIGUE
PEAK
STRESS
ON
IN-PHASE
THERMOMECHANICAL
FATIGUE
DAMAGE
EVOLUTION
354
4.4.1.3
EFFECTS
OF
MATRIX
STOCHASTIC
CRACKING
ON
IN-PHASE
THERMOMECHANICAL
FATIGUE
DAMAGE
EVOLUTION
357
4.4.1.4
EFFECTS
OF
INTERFACE
PROPERTIES
ON
IN-PHASE
THERMOMECHANICAL
FATIGUE
DAMAGE
EVOLUTION
361
4.4.1.5
EFFECTS
OF
THERMAL
CYCLIC
TEMPERATURE
RANGE
ON
IN-PHASE
THERMOMECHANICAL
FATIGUE
DAMAGE
EVOLUTION
365
CONTENTS
IX
4.4.1.6
COMPARISONS
BETWEEN
IN-PHASE
THERMOMECHANICAL
AND
ISOTHERMAL
FATIGUE
LOADING
368
4.4.2
EXPERIMENTAL
COMPARISONS
370
4.4.2.1
THERMOMECHANICAL
FATIGUE
LOADING
371
4.4.2.2
ISOTHERMAL
FATIGUE
LOADING
372
4.5
OUT-OF-PHASE
THERMOMECHANICAL
FATIGUE
373
4.5.1
RESULTS
AND
DISCUSSIONS
374
4.5.1.1
EFFECTS
OF
FIBER VOLUME
FRACTION
ON
OUT-OF-PHASE
THERMOMECHANICAL
FATIGUE
DAMAGE
EVOLUTION
374
4.5.1.2
EFFECTS
OF
FATIGUE
PEAK
STRESS
ON
OUT-OF-PHASE
THERMOMECHANICAL
FATIGUE
DAMAGE
EVOLUTION
379
4.5.1.3
EFFECTS
OF
MATRIX
CRACK
SPACING
ON
OUT-OF-PHASE
THERMOMECHANICAL
FATIGUE
DAMAGE
EVOLUTION
383
4.5.1.4
EFFECTS
OF
INTERFACE
FRICTIONAL
COEFFICIENT
ON
OUT-OF-PHASE
THERMOMECHANICAL
FATIGUE
DAMAGE
EVOLUTION
386
4.5.1.5
EFFECTS
OF
THERMAL
CYCLIC
TEMPERATURE
RANGE
OUT-OF-PHASE
THERMOMECHANICAL
FATIGUE
DAMAGE
EVOLUTION
390
4.5.1.6
COMPARISONS
BETWEEN
IN-PHASE/OUT-OF-PHASE
THERMOMECHANICAL
FATIGUE
AND
ISOTHERMAL
FATIGUE
LOADING
393
4.5.2
EXPERIMENTAL
COMPARISONS
397
4.5.2.1
OUT-OF-PHASE
THERMOMECHANICAL
FATIGUE
LOADING
AT
THE
TEMPERATURE
RANGE
FROM
566
TO
1093
C
397
4.5.2.2
ISOTHERMAL
FATIGUE
LOADING
AT
566
C
399
4.5.2.3
ISOTHERMAL
FATIGUE
LOADING
AT
1093
C
401
4.6
THERMOMECHANICAL
FATIGUE
WITH
DIFFERENT
PHASE
ANGLES
403
4.6.1
RESULTS
AND
DISCUSSIONS
403
4.6.1.1
EFFECTS
OF
FIBER
VOLUME
FRACTION
ON
THERMOMECHANICAL
FATIGUE
DAMAGE
EVOLUTION
408
4.6.1.2
EFFECTS
OF
FATIGUE
PEAK
STRESS
ON
THERMOMECHANICAL
FATIGUE
DAMAGE
EVOLUTION
416
4.6.1.3
EFFECTS
OF
MATRIX
CRACK
SPACING
ON
THERMOMECHANICAL
FATIGUE
DAMAGE
EVOLUTION
426
4.6.2
EXPERIMENTAL
COMPARISONS
432
4.6.2.1
IN-PHASE
THERMOMECHANICAL
FATIGUE
433
4.6.2.2
OUT-OF-PHASE
THERMOMECHANICAL
FATIGUE
433
4.7
CONCLUSIONS
434
REFERENCES
434
5
INTERFACE
DEGRADATION
OF
CERAMIC-MATRIX
COMPOSITES
UNDER
THERMOMECHANICAL
FATIGUE
LOADING
437
5.1
INTRODUCTION
437
5.2
INTERFACE
DEGRADATION
MODELS
438
5.2.1
INTERFACE
SLIP
CASE
1
438
5.2.2
INTERFACE
SLIP
CASE
2
439
5.2.3
INTERFACE
SLIP
CASE
3
439
5.2.4
INTERFACE
SLIP
CASE
4
440
5.2.5
HYSTERESIS
LOOPS
AND
HYSTERESIS-BASED
DAMAGE
PARAMETERS
441
X
CONTENTS
5.3
EXPERIMENTAL
COMPARISONS
445
5.3.1
UNIDIRECTIONAL
C/SIC
COMPOSITE
445
5.3.1.1
ROOM
TEMPERATURE
445
5.3.1.2
ELEVATED
TEMPERATURE
451
5.3.1.3
COMPARISON
ANALYSIS
456
5.3.2
UNIDIRECTIONAL
SIC/SI
3
N
4
COMPOSITE
457
5.3.2.1
ROOM
TEMPERATURE
457
5.3.2.2
ELEVATED
TEMPERATURE
461
5.3.2.3
COMPARISON
ANALYSIS
467
5.3.3
2D
SIC/SIC
COMPOSITE
468
5.3.3.1
ROOM
TEMPERATURE
468
53.3.2
ELEVATED
TEMPERATURE
470
5.3.3.3
COMPARISON
ANALYSIS
472
5.4
CONCLUSIONS
473
REFERENCES
474
INDEX
475 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Li, Longbiao |
author_GND | (DE-588)1199153478 |
author_facet | Li, Longbiao |
author_role | aut |
author_sort | Li, Longbiao |
author_variant | l l ll |
building | Verbundindex |
bvnumber | BV046733937 |
classification_rvk | ZM 7024 UQ 8420 |
ctrlnum | (OCoLC)1102642562 (DE-599)DNB1186992387 |
dewey-full | 620.140426 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.140426 |
dewey-search | 620.140426 |
dewey-sort | 3620.140426 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Maschinenbau / Maschinenwesen Chemie / Pharmazie Physik Werkstoffwissenschaften / Fertigungstechnik |
discipline_str_mv | Maschinenbau / Maschinenwesen Chemie / Pharmazie Physik Werkstoffwissenschaften / Fertigungstechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03261nam a2200817 c 4500</leader><controlfield tag="001">BV046733937</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20201021 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">200525s2020 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">19,N22</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">20,A07</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527346370</subfield><subfield code="c">Festeinband : circa EUR 159.00 (DE) (freier Preis)</subfield><subfield code="9">978-3-527-34637-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3527346376</subfield><subfield code="9">3-527-34637-6</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783527346370</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1102642562</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1186992387</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.140426</subfield><subfield code="2">23/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZM 7024</subfield><subfield code="0">(DE-625)157101:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UQ 8420</subfield><subfield code="0">(DE-625)146597:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">620</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">660</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Longbiao</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1199153478</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Thermomechanical fatigue of ceramic-matrix composites</subfield><subfield code="c">Longbiao Li</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">Wiley-VCH</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">x, 480 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">25 cm, 1118 g</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Werkstoffschädigung</subfield><subfield code="0">(DE-588)4284135-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Keramischer Werkstoff</subfield><subfield code="0">(DE-588)4030282-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Materialermüdung</subfield><subfield code="0">(DE-588)4074631-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Verbundwerkstoff</subfield><subfield code="0">(DE-588)4062670-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zyklische Belastung</subfield><subfield code="0">(DE-588)7560628-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mechanische Beanspruchung</subfield><subfield code="0">(DE-588)4196812-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Bauingenieur- u. Bauwesen</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Baustoffe</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Bruchmechanik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Ceramics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Civil Engineering & Construction</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Construction Materials</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Failure Fracture</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Keramische Werkstoffe</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Keramischer Werkstoff</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Maschinenbau</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Materials Science</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Materialwissenschaften</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Mechanical Engineering</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">CE11: Baustoffe</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">ME60: Bruchmechanik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">MS20: Keramische Werkstoffe</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Keramischer Werkstoff</subfield><subfield code="0">(DE-588)4030282-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Verbundwerkstoff</subfield><subfield code="0">(DE-588)4062670-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Mechanische Beanspruchung</subfield><subfield code="0">(DE-588)4196812-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Zyklische Belastung</subfield><subfield code="0">(DE-588)7560628-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Materialermüdung</subfield><subfield code="0">(DE-588)4074631-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="5"><subfield code="a">Werkstoffschädigung</subfield><subfield code="0">(DE-588)4284135-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Wiley-VCH</subfield><subfield code="0">(DE-588)16179388-5</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-3-527-82259-1</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-3-527-82260-7</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-527-82261-4</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="u">http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34637-0/</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">B:DE-101</subfield><subfield code="q">application/pdf</subfield><subfield code="u">https://d-nb.info/1186992387/04</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032143970&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032143970</subfield></datafield></record></collection> |
id | DE-604.BV046733937 |
illustrated | Illustrated |
index_date | 2024-07-03T14:37:14Z |
indexdate | 2024-07-10T08:52:21Z |
institution | BVB |
institution_GND | (DE-588)16179388-5 |
isbn | 9783527346370 3527346376 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032143970 |
oclc_num | 1102642562 |
open_access_boolean | |
owner | DE-83 DE-703 |
owner_facet | DE-83 DE-703 |
physical | x, 480 Seiten Illustrationen, Diagramme 25 cm, 1118 g |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Wiley-VCH |
record_format | marc |
spelling | Li, Longbiao Verfasser (DE-588)1199153478 aut Thermomechanical fatigue of ceramic-matrix composites Longbiao Li Weinheim Wiley-VCH [2020] © 2020 x, 480 Seiten Illustrationen, Diagramme 25 cm, 1118 g txt rdacontent n rdamedia nc rdacarrier Werkstoffschädigung (DE-588)4284135-5 gnd rswk-swf Keramischer Werkstoff (DE-588)4030282-9 gnd rswk-swf Materialermüdung (DE-588)4074631-8 gnd rswk-swf Verbundwerkstoff (DE-588)4062670-2 gnd rswk-swf Zyklische Belastung (DE-588)7560628-8 gnd rswk-swf Mechanische Beanspruchung (DE-588)4196812-8 gnd rswk-swf Bauingenieur- u. Bauwesen Baustoffe Bruchmechanik Ceramics Civil Engineering & Construction Construction Materials Failure Fracture Keramische Werkstoffe Keramischer Werkstoff Maschinenbau Materials Science Materialwissenschaften Mechanical Engineering CE11: Baustoffe ME60: Bruchmechanik MS20: Keramische Werkstoffe Keramischer Werkstoff (DE-588)4030282-9 s Verbundwerkstoff (DE-588)4062670-2 s Mechanische Beanspruchung (DE-588)4196812-8 s Zyklische Belastung (DE-588)7560628-8 s Materialermüdung (DE-588)4074631-8 s Werkstoffschädigung (DE-588)4284135-5 s DE-604 Wiley-VCH (DE-588)16179388-5 pbl Erscheint auch als Online-Ausgabe, PDF 978-3-527-82259-1 Erscheint auch als Online-Ausgabe, EPUB 978-3-527-82260-7 Erscheint auch als Online-Ausgabe 978-3-527-82261-4 X:MVB http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34637-0/ B:DE-101 application/pdf https://d-nb.info/1186992387/04 Inhaltsverzeichnis DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032143970&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Li, Longbiao Thermomechanical fatigue of ceramic-matrix composites Werkstoffschädigung (DE-588)4284135-5 gnd Keramischer Werkstoff (DE-588)4030282-9 gnd Materialermüdung (DE-588)4074631-8 gnd Verbundwerkstoff (DE-588)4062670-2 gnd Zyklische Belastung (DE-588)7560628-8 gnd Mechanische Beanspruchung (DE-588)4196812-8 gnd |
subject_GND | (DE-588)4284135-5 (DE-588)4030282-9 (DE-588)4074631-8 (DE-588)4062670-2 (DE-588)7560628-8 (DE-588)4196812-8 |
title | Thermomechanical fatigue of ceramic-matrix composites |
title_auth | Thermomechanical fatigue of ceramic-matrix composites |
title_exact_search | Thermomechanical fatigue of ceramic-matrix composites |
title_exact_search_txtP | Thermomechanical fatigue of ceramic-matrix composites |
title_full | Thermomechanical fatigue of ceramic-matrix composites Longbiao Li |
title_fullStr | Thermomechanical fatigue of ceramic-matrix composites Longbiao Li |
title_full_unstemmed | Thermomechanical fatigue of ceramic-matrix composites Longbiao Li |
title_short | Thermomechanical fatigue of ceramic-matrix composites |
title_sort | thermomechanical fatigue of ceramic matrix composites |
topic | Werkstoffschädigung (DE-588)4284135-5 gnd Keramischer Werkstoff (DE-588)4030282-9 gnd Materialermüdung (DE-588)4074631-8 gnd Verbundwerkstoff (DE-588)4062670-2 gnd Zyklische Belastung (DE-588)7560628-8 gnd Mechanische Beanspruchung (DE-588)4196812-8 gnd |
topic_facet | Werkstoffschädigung Keramischer Werkstoff Materialermüdung Verbundwerkstoff Zyklische Belastung Mechanische Beanspruchung |
url | http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34637-0/ https://d-nb.info/1186992387/04 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032143970&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT lilongbiao thermomechanicalfatigueofceramicmatrixcomposites AT wileyvch thermomechanicalfatigueofceramicmatrixcomposites |
Es ist kein Print-Exemplar vorhanden.
Inhaltsverzeichnis