Calculus problem solutions with MATLAB:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin
De Gruyter
[2020]
[Beijing] Tsinghua University Press [2020] |
Schriftenreihe: | De Gruyter STEM
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Inhaltsverzeichnis |
Beschreibung: | XII, 300 Seiten Illustrationen 24 cm, 535 g |
ISBN: | 9783110663624 3110663627 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV046727521 | ||
003 | DE-604 | ||
005 | 20221117 | ||
007 | t | ||
008 | 200519s2020 gw a||| |||| 00||| eng d | ||
016 | 7 | |a 1190749920 |2 DE-101 | |
020 | |a 9783110663624 |c Broschur |9 978-3-11-066362-4 | ||
020 | |a 3110663627 |9 3-11-066362-7 | ||
035 | |a (OCoLC)1110051529 | ||
035 | |a (DE-599)DNB1190749920 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-634 |a DE-1050 |a DE-83 |a DE-703 |a DE-19 |a DE-706 |a DE-20 |a DE-11 | ||
082 | 0 | |a 515.0285 |2 23/ger | |
084 | |a ST 601 |0 (DE-625)143682: |2 rvk | ||
084 | |a ST 620 |0 (DE-625)143684: |2 rvk | ||
084 | |a SK 400 |0 (DE-625)143237: |2 rvk | ||
084 | |a SK 399 |0 (DE-625)143236: |2 rvk | ||
084 | |a 510 |2 sdnb | ||
084 | |a ST 601 M35 |2 sdnb | ||
100 | 1 | |a Xue, Dingyu |e Verfasser |0 (DE-588)1098160967 |4 aut | |
245 | 1 | 0 | |a Calculus problem solutions with MATLAB |c Dingyü Xue |
264 | 1 | |a Berlin |b De Gruyter |c [2020] | |
264 | 1 | |a [Beijing] |b Tsinghua University Press |c [2020] | |
264 | 4 | |c © 2020 | |
300 | |a XII, 300 Seiten |b Illustrationen |c 24 cm, 535 g | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a De Gruyter STEM | |
650 | 0 | 7 | |a MATLAB |0 (DE-588)4329066-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Analysis |0 (DE-588)4001865-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Analysis |0 (DE-588)4001865-9 |D s |
689 | 0 | 1 | |a MATLAB |0 (DE-588)4329066-8 |D s |
689 | 0 | |5 DE-604 | |
710 | 2 | |a Walter de Gruyter GmbH & Co. KG |0 (DE-588)10095502-2 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 978-3-11-066697-7 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-3-11-066375-4 |
856 | 4 | 2 | |m B:DE-101 |q application/pdf |u https://d-nb.info/1190749920/04 |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032137632&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-032137632 |
Datensatz im Suchindex
_version_ | 1804181472221855744 |
---|---|
adam_text | CONTENTS
PREFACE
*
V
1
INTRODUCTION
TO
CALCULUS
PROBLEMS
*
1
1.1
A
BRIEF
HISTORY
OF
CALCULUS
*
1
1.2
MAIN
TOPICS
IN
THE
BOOK
*
2
2
FUNCTIONS
AND
SEQUENCES
*
5
2.1
FUNCTIONS
AND
MAPPINGS
*
5
2.1.1
DEFINITIONS
OF
FUNCTIONS
*
5
2.1.2
MATLAB
COMPUTATION
OF
COMMONLY
USED
TRANSCENDENTAL
FUNCTIONS
*
6
2.1.3
MATLAB
REPRESENTATION
OF
FUNCTIONS
*
6
2.1.4
CURVES
AND
SURFACES
OF
FUNCTIONS
*
7
2.2
DESCRIPTIONS
OF
VARIOUS
FUNCTIONS
*
8
2.2.1
INVERSE
FUNCTIONS
*
8
2.2.2
COMPOSITE
FUNCTIONS
*
8
2.2.3
DESCRIBING
PIECEWISE
FUNCTIONS
*
10
2.2.4
IMPLICIT
FUNCTIONS
*
12
2.2.5
PARAMETRIC
EQUATIONS
*
14
2.2.6
POLAR
FUNCTIONS
*
16
2.3
ODD
AND
EVEN
FUNCTIONS
*
17
2.4
COMPLEX-VALUED
FUNCTIONS
AND
MAPPING
*
18
2.4.1
COMPLEX
MATRICES
AND
MANIPULATIONS
*
18
2.4.2
MAPPING
OF
COMPLEX-VALUED
FUNCTIONS
*
18
2.4.3
RIEMANN
SURFACES
*
20
2.5
NUMERIC
AND
FUNCTIONAL
SEQUENCES
*
23
2.6
EXERCISES
*
25
3
LIMITS
*
27
3.1
LIMITS
OF
UNIVARIATE
FUNCTIONS
*
28
3.1.1
THE
-5
DEFINITION
*
28
3.1.2
LIMIT
COMPUTING
WITH
MATLAB
-----30
3.1.3
LIMITS
OF
COMPOSITE
FUNCTIONS
*
32
3.1.4
LIMITS
OF
SEQUENCES
*
33
3.1.5
LIMITS
OF
PIECEWISE
FUNCTIONS
*
35
3.1.6
INFINITESIMALS
AND
INFINITY
*
35
3.2
SINGLE-SIDED
LIMITS
AND
CONTINUITY
OF
FUNCTIONS
*
36
3.2.1
LEFT
AND
RIGHT
LIMITS
*
36
3.2.2
CONTINUITY
OF
FUNCTIONS
-----
38
3.2.3
INTERVAL
LIMITS
*
40
3.2.4
APPLICATIONS
OF
CONTINUITY
-
ASSESSMENT
OF
EQUATION
SOLUTIONS
*
40
VIII
*
-
CONTENTS
3.3
3.3.1
3.3.2
3.4
3.4.1
3.4.2
3.5
SINGULARITIES,
POLES
AND
RESIDUES
OF
COMPLEX
FUNCTIONS
*
42
COMPUTATION
OF
SINGULARITIES
AND
POLES
*
42
RESIDUES
OF
COMPLEX
FUNCTIONS
-----
43
LIMITS
OF
MULTIVARIATE
FUNCTIONS
*
45
SEQUENTIAL
LIMITS
*
45
MULTIPLE
LIMITSAND
COMPUTATIONS
*
46
EXERCISES
*
49
4
4.1
4.1.1
4.1.2
4.1.3
4.1.4
4.1.5
4.2
4.3
4.3.1
4.3.2
4.3.3
4.4
4.4.1
4.4.2
4.4.3
4.5
4.5.1
4.5.2
4.5.3
4.6
4.6.1
4.6.2
4.6.3
4.7
4.7.1
4.7.2
4.7.3
4.8
DERIVATIVES
AND
DIFFERENTIALS
*
53
DERIVATIVES
AND
HIGH-ORDER
DERIVATIVES
*
54
DERIVATIVES
AND
DIFFERENTIALS
*
54
HIGHER-ORDER
DERIVATIVES
*
55
DERIVATIVES
OF
COMPOSITE
FUNCTIONS
*
58
DERIVATIVES
OF
PIECEWISE
FUNCTIONS
*
59
DERIVATIVES
OF
MATRICES
*
60
DERIVATIVES
OF
PARAMETRIC
EQUATIONS
*
61
PARTIAL DERIVATIVES
OF
MULTIVARIATE
FUNCTIONS
*
63
PARTIAL DERIVATIVES
*
63
TOTAL
DIFFERENTIAL
*
66
DERIVATIVES
OF
COMPOSITE
FUNCTIONS
*
66
INTRODUCTION
TO
FIELDS
*
67
SCALAR
AND
VECTOR
FIELDS
*
68
GRADIENT,
DIVERGENCE,
AND
CURL
*
68
POTENTIALS
OF
A
VECTOR
FIELD
-----
70
DERIVATIVE
MATRICES
*
71
JACOBIAN
MATRIX
*
71
HESSIAN
MATRIX
*
72
LAPLACIAN
OPERATORS
FOR
SCALAR
FIELDS
*
72
PARTIAL DERIVATIVES
OF
IMPLICIT
FUNCTIONS
*
73
FIRST-ORDER
DERIVATIVE
OF
AN
IMPLICIT
FUNCTION
*
73
HIGHER-ORDER
DERIVATIVES
OF
IMPLICIT
FUNCTIONS
*
74
PARTIAL DERIVATIVES
OF
SIMULTANEOUS
IMPLICIT
FUNCTIONS
*
76
APPLICATIONS
OF
DERIVATIVES
AND
DIFFERENTIALS
*
79
EXTREME
VALUE
PROBLEM
*
79
NEWTON-RAPHSON
ITERATIVE
ALGORITHM
*
82
TANGENT
PLANES
AND
NORMAL
LINES
*
83
EXERCISES
*
85
5
5.1
5.2
5.2.1
INTEGRALS
*
87
INDEFINITE
INTEGRALS
OF
UNIVARIATE
FUNCTIONS
*
87
DEFINITE
AND
IMPROPER
INTEGRALS
*
92
DEFINITE
INTEGRALS
*
92
CONTENTS
*
IX
5.2.2
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.4
5.4.1
5.4.2
5.4.3
5.4.4
5.4.5
5.5
5.5.1
5.5.2
5.6
5.6.1
5.6.2
5.7
INFINITE
AND
IMPROPER
INTEGRALS
*
95
MULTIPLE
INTEGRALS
*
98
MULTIPLE
INDEFINITE
INTEGRALS
*
98
CONSTRUCTIONS
OF
UNDETERMINED
POLYNOMIALS
*
99
COMPUTATION
OF
MULTIPLE
INTEGRALS
*
100
CONVERSIONS
OF
INTEGRATION
REGIONS
*
102
APPLICATIONS
OF
DEFINITE
INTEGRALS
*
103
COMPUTATION
OF
ARC
LENGTH
*
103
COMPUTATION
OF
VOLUME
*
105
VOLUME
AND
MASS
COMPUTATION
*
106
COMPUTATION
OF
PROBABILITY
DISTRIBUTION
*
108
AN
INTRODUCTION
TO
INTEGRAL
TRANSFORMS
*
109
PATH
INTEGRALS
*
109
TYPE
1
PATH
INTEGRAL
*
110
TYPE
II
PATH
INTEGRAL
*
112
SURFACE
INTEGRALS
*
114
TYPE
1
SURFACE
INTEGRALS
*
114
TYPE
II
SURFACE
INTEGRALS
*
116
EXERCISES
*
118
6
6.1
6.1.1
6.1.2
6.1.3
6.1.4
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.3
6.3.1
6.3.2
6.3.3
6.4
6.4.1
6.4.2
6.5
6.5.1
6.5.2
6.6
SERIES
AND
FUNCTION
FITTING
*
121
SERIES
SUMS
*
121
NUMBER
SERIES
SUMS
*
121
SUM
OF
INFINITE
SERIES
*
125
SUM
OF
FUNCTIONAL
SERIES
*
127
SPECIAL
INFINITE
TERM
PROBLEMS
*
128
CONVERGENCE
TESTS
FOR
INFINITE
SERIES
*
131
GENERAL
DESCRIPTION
OF
A
POSITIVE
SERIES
*
131
CONVERGENCE
TESTS
FOR
POSITIVE
SERIES
*
131
CONVERGENCE
TEST
FOR
ALTERNATING
SERIES
*
133
CONVERGENCE
INTERVAL
OF
A
FUNCTIONAL
SERIES
*
134
PRODUCTS
OF
SEQUENCES
*
135
PRODUCTS
OF
NUMBER
SEQUENCES
*
135
PRODUCTS
OF
FUNCTIONAL
SEQUENCES
*
136
CONVERGENCE
TEST
FOR
THE
PRODUCTS
OF
POSITIVE
SEQUENCES
*
137
TAYLOR
SERIES
*
138
TAYLOR
SERIES
EXPANSIONS
FOR
UNIVARIATE
FUNCTIONS
*
139
TAYLOR
SERIES
FOR
MULTIVARIATE
FUNCTIONS
*
142
FOURIER
SERIES
EXPANSIONS
*
144
MATHEMATICAL DESCRIPTION
OF
FOURIER
SERIES
*
144
MATLAB
IMPLEMENTATION
OF
FOURIER
SERIES
-----
145
RATIONAL
FUNCTION
APPROXIMATION
OF
UNIVARIATE
FUNCTIONS
*
148
X
CONTENTS
6.6.1
CONTINUED
FRACTION
EXPANSIONS
----
148
6.6.2
FADE
APPROXIMATIONS
-----
153
6.7
LAURENT
SERIES
------
155
6.7.1
LAURENT
SERIES
EXPANSION
------
155
6.7.2
LAURENT
SERIES
OF
RATIONAL
FUNCTIONS
------
157
6.8
EXERCISES
-----
159
7
NUMERICAL
DERIVATIVES
AND
DIFFERENTIALS
*
163
7.1
NUMERICAL
DERIVATIVE
ALGORITHMS
-----
163
7.1.1
FORWARD
AND
BACKWARD
DIFFERENCE
ALGORITHMS
-----
164
7.1.2
CENTRAL
DIFFERENCE
ALGORITHMS
WITH
O(/?
2
)
PRECISION
-----
164
7.1.3
CENTRAL
DIFFERENCE
ALGORITHM
WITH
O(/?
4
)
PRECISION
-----
165
7.1.4
CENTRAL
DIFFERENCE
ALGORITHMS
OF
HIGHER
PRECISION
-----
166
7.1.5
DERIVING
HIGH-ORDER
HIGH
PRECISION
ALGORITHMS
-----
167
7.1.6
HIGH
PRECISION
FORWARD
AND
BACKWARD
DIFFERENCE
ALGORITHMS
-----
169
7.2
MATLAB
IMPLEMENTATIONS
OF
THE
NUMERICAL
DERIVATIVE
ALGORITHMS
-----
172
7.2.1
IMPLEMENTATION
OFTHEO(/?
2
)
ALGORITHMS
-----
172
7.2.2
IMPLEMENTATION
OF
THE
SEVEN-POINT
CENTRAL
DIFFERENCE
ALGORITHMS
-----
174
7.2.3
IMPLEMENTATION
OF
FORWARD
DIFFERENCE
NUMERICAL
DERIVATIVE
ALGORITHMS
-----
176
7.3
NUMERICAL
DERIVATIVES
OF
ANY
ORDERS
-----
177
7.4
NUMERICAL
PARTIAL
DERIVATIVES
OF
2D
FUNCTIONS
-----
179
7.4.1
GRADIENT
COMPUTATION
-----
179
7.4.2
HIGH
PRECISION
ALGORITHMS
FOR
DERIVATIVES
WITH
RESPECT
TO
A
SINGLE
VARIABLE
-----
181
7.4.3
NUMERICAL
COMPUTATION
OF
MIXED
PARTIAL
DERIVATIVES
-----
183
7.4.4
NUMERICAL
COMPUTATION
OF
HIGH-ORDER
MIXED
PARTIAL
DERIVATIVES
-----
184
7.5
SPLINE
INTERPOLATION
AND
NUMERICAL
DERIVATIVES
-----
185
7.5.1
CUBIC
SPLINE
-----
186
7.5.2
B-SPLINES
-----
189
7.5.3
NUMERICAL
DERIVATIVES
WITH
SPLINES
------
190
7.5.4
UNEQUALLY
SPACED
AND
SCATTERED
SAMPLES
-----
193
7.6
EXERCISES
-----
195
8
NUMERICAL
INTEGRALS
*
197
8.1
NUMERICAL
INTEGRALS
FROM
SAMPLES
-----
197
8.1.1
DIRECT
COMPUTATION
OF
NUMERICAL
DEFINITE
INTEGRALS
-----
197
8.1.2
RECONSTRUCTION
OF
INTEGRAL
FUNCTION
-----
200
8.1.3
HIGH
PRECISION
NUMERICAL
INTEGRATION
ALGORITHM
FOR
EQUALLY
SPACED
SAMPLES
-----
201
8.2
NUMERICAL
INTEGRALS
OF
UNIVARIATE
FUNCTIONS
-----
203
8.2.1
SIMPLE
NUMERICAL
INTEGRAL
PROBLEMS
-----
204
CONTENTS
*
XI
8.2.2
MATLAB
SOLUTIONS
OF
NUMERICAL
INTEGRAL
PROBLEMS
*
205
8.2.3
NUMERICAL
COMPUTATION
OF
IMPROPER
INTEGRALS
*
210
8.2.4
NUMERICAL
INTEGRALS
FOR
INTEGRANDS
WITH
PARAMETERS
*
212
8.2.5
NUMERICAL
SOLUTIONS
OF
INTEGRAL
FUNCTIONS
*
213
8.3
NUMERICAL
COMPUTATION
OF
DOUBLE
INTEGRALS
*
214
8.3.1
COMPUTING
DOUBLE
INTEGRALS
*
215
8.3.2
COMPUTATION
OF
DOUBLE
INTEGRAL
FUNCTIONS
*
216
8.3.3
EVALUATIONS
OF
DOUBLE
INTEGRALS
IN
DIFFERENT
ORDER
*
218
8.4
NUMERICAL
COMPUTATION
OF
MULTIPLE
INTEGRALS
*
219
8.4.1
NUMERICAL
TRIPLE
INTEGRALS
*
219
8.4.2
TRIPLE
INTEGRALS
OF
INTEGRANDS
WITH
PARAMETERS
*
221
8.4.3
MULTIPLE
INTEGRALS
*
222
8.4.4
NUMERICAL
SOLUTIONS
OF
SOME
MULTIPLE
INTEGRALS
WITH
VARIABLE
BOUNDS
-----
224
8.5
OTHER
NUMERICAL
METHODS
FOR
MULTIPLE
INTEGRALS
*
225
8.5.1
NUMERICAL
INTEGRAL
APPROXIMATIONS
WITH
MONTE
CARLO
METHOD
*
226
8.5.2
SPLINE-BASED
INTEGRAL
EVALUATIONS
*
228
8.5.3
NUMERICAL
EVALUATIONS
OF
MULTIPLE
INTEGRALS
*
231
8.6
EXERCISES
*
232
9
INTEGRAL
TRANSFORMS
*
235
9.1
LAPLACE
TRANSFORMS
AND
THEIR
INVERSES
*
235
9.1.1
DEFINITION
AND
PROPERTIES
OF
LAPLACE
TRANSFORM
*
236
9.1.2
COMPUTER
SOLUTIONS
OF
LAPLACE
TRANSFORMS
*
237
9.1.3
SOLVING
DIFFERENTIAL
EQUATIONS
WITH
LAPLACE
TRANSFORM
*
240
9.2
NUMERICAL
SOLUTIONS
OF
LAPLACE
TRANSFORM
PROBLEMS
*
242
9.2.1
NUMERICAL
INVERSE
LAPLACE
TRANSFORM
*
243
9.2.2
IDEAS
OF
FEEDBACK
CONTROL
SYSTEMS
*
243
9.2.3
NUMERICAL
LAPLACE
TRANSFORMS
*
244
9.2.4
COMPUTATION
OF
IRRATIONAL
SYSTEMS
*
247
9.3
FOURIER
TRANSFORMS
AND
THEIR
INVERSES
*
248
9.3.1
DEFINITION
AND
PROPERTIES
OF
FOURIER
TRANSFORMS
*
249
9.3.2
COMPUTER
EVALUATION
OF
FOURIER
TRANSFORM
*
249
9.3.3
FOURIER
SINE
AND
COSINE
TRANSFORMS
*
251
9.3.4
DISCRETE
FOURIER
SINE
AND
COSINE
TRANSFORMS
*
252
9.3.5
FAST
FOURIER
TRANSFORM
*
253
9.4
COMPUTATION
OF
OTHER
INTEGRAL
TRANSFORMS
*
255
9.4.1
MELLIN
TRANSFORM
*
255
9.4.2
COMPUTATION
OF
HANKEL
TRANSFORMS
*
258
9.5
THE
Z
TRANSFORM
AND
ITS
INVERSE
*
259
9.5.1
DEFINITION
AND
PROPERTIES
OF
Z
TRANSFORMS
*
260
9.5.2
COMPUTER
EVALUATION
OF
Z
TRANSFORMS
*
260
XII
*
CONTENTS
9.5.3
9.5.4
9.6
BILATERAL
Z
TRANSFORM
-----
262
NUMERICAL
INVERSE
Z
TRANSFORMS
FOR
RATIONAL
FUNCTIONS
-----
263
EXERCISES
-----
264
10
10.1
10.1.1
10.1.2
10.2
INTRODUCTION
TO
FRACTIONAL
CALCULUS
*
267
DEFINITIONS
IN
FRACTIONAL
CALCULUS
-----
268
WHY
FRACTIONAL
CALCULUS?
-----
268
DEFINITIONS
-----
269
PROPERTIES
AND
RELATIONSHIPS
AMONG
DIFFERENT
FRACTIONAL
CALCULUS
DEFINITIONS
-----
270
10.3
10.3.1
10.3.2
10.3.3
10.4
10.5
10.5.1
10.5.2
10.5.3
10.6
NUMERICAL
IMPLEMENTATION
OF
GRUNWALD-LETNIKOV
DERIVATIVES
-----
272
SIMPLE
GRUNWALD-LETNIKOV
DEFINITION
EVALUATION
-----
272
HIGH
PRECISION
ALGORITHMS
AND
IMPLEMENTATION
-----
272
QUANTITATIVE
COMPARISONS
OF
DIFFERENT
ALGORITHMS
-----
277
NUMERICAL
COMPUTATION
OF
CAPUTO
DERIVATIVES
-----
279
OUSTALOUP
FILTER
ALGORITHMS
AND
APPLICATIONS
-----
282
OUSTALOUP
FILTER
APPROXIMATIONS
*
283
FILTER
FOR
CAPUTO
DERIVATIVE
FITTING
-----
285
SIMULINK-BASED
CAPUTO
DERIVATIVE
COMPUTATION
*
286
NUMERICAL
COMPUTATION
OF
EVEN
HIGHER-ORDER
DERIVATIVES
AND
INTEGRALS
-----
288
10.7
EXERCISES
-----
290
BIBLIOGRAPHY
*
291
MATLAB
FUNCTION
INDEX
*
293
INDEX
*
297
|
adam_txt |
CONTENTS
PREFACE
*
V
1
INTRODUCTION
TO
CALCULUS
PROBLEMS
*
1
1.1
A
BRIEF
HISTORY
OF
CALCULUS
*
1
1.2
MAIN
TOPICS
IN
THE
BOOK
*
2
2
FUNCTIONS
AND
SEQUENCES
*
5
2.1
FUNCTIONS
AND
MAPPINGS
*
5
2.1.1
DEFINITIONS
OF
FUNCTIONS
*
5
2.1.2
MATLAB
COMPUTATION
OF
COMMONLY
USED
TRANSCENDENTAL
FUNCTIONS
*
6
2.1.3
MATLAB
REPRESENTATION
OF
FUNCTIONS
*
6
2.1.4
CURVES
AND
SURFACES
OF
FUNCTIONS
*
7
2.2
DESCRIPTIONS
OF
VARIOUS
FUNCTIONS
*
8
2.2.1
INVERSE
FUNCTIONS
*
8
2.2.2
COMPOSITE
FUNCTIONS
*
8
2.2.3
DESCRIBING
PIECEWISE
FUNCTIONS
*
10
2.2.4
IMPLICIT
FUNCTIONS
*
12
2.2.5
PARAMETRIC
EQUATIONS
*
14
2.2.6
POLAR
FUNCTIONS
*
16
2.3
ODD
AND
EVEN
FUNCTIONS
*
17
2.4
COMPLEX-VALUED
FUNCTIONS
AND
MAPPING
*
18
2.4.1
COMPLEX
MATRICES
AND
MANIPULATIONS
*
18
2.4.2
MAPPING
OF
COMPLEX-VALUED
FUNCTIONS
*
18
2.4.3
RIEMANN
SURFACES
*
20
2.5
NUMERIC
AND
FUNCTIONAL
SEQUENCES
*
23
2.6
EXERCISES
*
25
3
LIMITS
*
27
3.1
LIMITS
OF
UNIVARIATE
FUNCTIONS
*
28
3.1.1
THE
-5
DEFINITION
*
28
3.1.2
LIMIT
COMPUTING
WITH
MATLAB
-----30
3.1.3
LIMITS
OF
COMPOSITE
FUNCTIONS
*
32
3.1.4
LIMITS
OF
SEQUENCES
*
33
3.1.5
LIMITS
OF
PIECEWISE
FUNCTIONS
*
35
3.1.6
INFINITESIMALS
AND
INFINITY
*
35
3.2
SINGLE-SIDED
LIMITS
AND
CONTINUITY
OF
FUNCTIONS
*
36
3.2.1
LEFT
AND
RIGHT
LIMITS
*
36
3.2.2
CONTINUITY
OF
FUNCTIONS
-----
38
3.2.3
INTERVAL
LIMITS
*
40
3.2.4
APPLICATIONS
OF
CONTINUITY
-
ASSESSMENT
OF
EQUATION
SOLUTIONS
*
40
VIII
*
-
CONTENTS
3.3
3.3.1
3.3.2
3.4
3.4.1
3.4.2
3.5
SINGULARITIES,
POLES
AND
RESIDUES
OF
COMPLEX
FUNCTIONS
*
42
COMPUTATION
OF
SINGULARITIES
AND
POLES
*
42
RESIDUES
OF
COMPLEX
FUNCTIONS
-----
43
LIMITS
OF
MULTIVARIATE
FUNCTIONS
*
45
SEQUENTIAL
LIMITS
*
45
MULTIPLE
LIMITSAND
COMPUTATIONS
*
46
EXERCISES
*
49
4
4.1
4.1.1
4.1.2
4.1.3
4.1.4
4.1.5
4.2
4.3
4.3.1
4.3.2
4.3.3
4.4
4.4.1
4.4.2
4.4.3
4.5
4.5.1
4.5.2
4.5.3
4.6
4.6.1
4.6.2
4.6.3
4.7
4.7.1
4.7.2
4.7.3
4.8
DERIVATIVES
AND
DIFFERENTIALS
*
53
DERIVATIVES
AND
HIGH-ORDER
DERIVATIVES
*
54
DERIVATIVES
AND
DIFFERENTIALS
*
54
HIGHER-ORDER
DERIVATIVES
*
55
DERIVATIVES
OF
COMPOSITE
FUNCTIONS
*
58
DERIVATIVES
OF
PIECEWISE
FUNCTIONS
*
59
DERIVATIVES
OF
MATRICES
*
60
DERIVATIVES
OF
PARAMETRIC
EQUATIONS
*
61
PARTIAL DERIVATIVES
OF
MULTIVARIATE
FUNCTIONS
*
63
PARTIAL DERIVATIVES
*
63
TOTAL
DIFFERENTIAL
*
66
DERIVATIVES
OF
COMPOSITE
FUNCTIONS
*
66
INTRODUCTION
TO
FIELDS
*
67
SCALAR
AND
VECTOR
FIELDS
*
68
GRADIENT,
DIVERGENCE,
AND
CURL
*
68
POTENTIALS
OF
A
VECTOR
FIELD
-----
70
DERIVATIVE
MATRICES
*
71
JACOBIAN
MATRIX
*
71
HESSIAN
MATRIX
*
72
LAPLACIAN
OPERATORS
FOR
SCALAR
FIELDS
*
72
PARTIAL DERIVATIVES
OF
IMPLICIT
FUNCTIONS
*
73
FIRST-ORDER
DERIVATIVE
OF
AN
IMPLICIT
FUNCTION
*
73
HIGHER-ORDER
DERIVATIVES
OF
IMPLICIT
FUNCTIONS
*
74
PARTIAL DERIVATIVES
OF
SIMULTANEOUS
IMPLICIT
FUNCTIONS
*
76
APPLICATIONS
OF
DERIVATIVES
AND
DIFFERENTIALS
*
79
EXTREME
VALUE
PROBLEM
*
79
NEWTON-RAPHSON
ITERATIVE
ALGORITHM
*
82
TANGENT
PLANES
AND
NORMAL
LINES
*
83
EXERCISES
*
85
5
5.1
5.2
5.2.1
INTEGRALS
*
87
INDEFINITE
INTEGRALS
OF
UNIVARIATE
FUNCTIONS
*
87
DEFINITE
AND
IMPROPER
INTEGRALS
*
92
DEFINITE
INTEGRALS
*
92
CONTENTS
*
IX
5.2.2
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.4
5.4.1
5.4.2
5.4.3
5.4.4
5.4.5
5.5
5.5.1
5.5.2
5.6
5.6.1
5.6.2
5.7
INFINITE
AND
IMPROPER
INTEGRALS
*
95
MULTIPLE
INTEGRALS
*
98
MULTIPLE
INDEFINITE
INTEGRALS
*
98
CONSTRUCTIONS
OF
UNDETERMINED
POLYNOMIALS
*
99
COMPUTATION
OF
MULTIPLE
INTEGRALS
*
100
CONVERSIONS
OF
INTEGRATION
REGIONS
*
102
APPLICATIONS
OF
DEFINITE
INTEGRALS
*
103
COMPUTATION
OF
ARC
LENGTH
*
103
COMPUTATION
OF
VOLUME
*
105
VOLUME
AND
MASS
COMPUTATION
*
106
COMPUTATION
OF
PROBABILITY
DISTRIBUTION
*
108
AN
INTRODUCTION
TO
INTEGRAL
TRANSFORMS
*
109
PATH
INTEGRALS
*
109
TYPE
1
PATH
INTEGRAL
*
110
TYPE
II
PATH
INTEGRAL
*
112
SURFACE
INTEGRALS
*
114
TYPE
1
SURFACE
INTEGRALS
*
114
TYPE
II
SURFACE
INTEGRALS
*
116
EXERCISES
*
118
6
6.1
6.1.1
6.1.2
6.1.3
6.1.4
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.3
6.3.1
6.3.2
6.3.3
6.4
6.4.1
6.4.2
6.5
6.5.1
6.5.2
6.6
SERIES
AND
FUNCTION
FITTING
*
121
SERIES
SUMS
*
121
NUMBER
SERIES
SUMS
*
121
SUM
OF
INFINITE
SERIES
*
125
SUM
OF
FUNCTIONAL
SERIES
*
127
SPECIAL
INFINITE
TERM
PROBLEMS
*
128
CONVERGENCE
TESTS
FOR
INFINITE
SERIES
*
131
GENERAL
DESCRIPTION
OF
A
POSITIVE
SERIES
*
131
CONVERGENCE
TESTS
FOR
POSITIVE
SERIES
*
131
CONVERGENCE
TEST
FOR
ALTERNATING
SERIES
*
133
CONVERGENCE
INTERVAL
OF
A
FUNCTIONAL
SERIES
*
134
PRODUCTS
OF
SEQUENCES
*
135
PRODUCTS
OF
NUMBER
SEQUENCES
*
135
PRODUCTS
OF
FUNCTIONAL
SEQUENCES
*
136
CONVERGENCE
TEST
FOR
THE
PRODUCTS
OF
POSITIVE
SEQUENCES
*
137
TAYLOR
SERIES
*
138
TAYLOR
SERIES
EXPANSIONS
FOR
UNIVARIATE
FUNCTIONS
*
139
TAYLOR
SERIES
FOR
MULTIVARIATE
FUNCTIONS
*
142
FOURIER
SERIES
EXPANSIONS
*
144
MATHEMATICAL DESCRIPTION
OF
FOURIER
SERIES
*
144
MATLAB
IMPLEMENTATION
OF
FOURIER
SERIES
-----
145
RATIONAL
FUNCTION
APPROXIMATION
OF
UNIVARIATE
FUNCTIONS
*
148
X
CONTENTS
6.6.1
CONTINUED
FRACTION
EXPANSIONS
----
148
6.6.2
FADE
APPROXIMATIONS
-----
153
6.7
LAURENT
SERIES
------
155
6.7.1
LAURENT
SERIES
EXPANSION
------
155
6.7.2
LAURENT
SERIES
OF
RATIONAL
FUNCTIONS
------
157
6.8
EXERCISES
-----
159
7
NUMERICAL
DERIVATIVES
AND
DIFFERENTIALS
*
163
7.1
NUMERICAL
DERIVATIVE
ALGORITHMS
-----
163
7.1.1
FORWARD
AND
BACKWARD
DIFFERENCE
ALGORITHMS
-----
164
7.1.2
CENTRAL
DIFFERENCE
ALGORITHMS
WITH
O(/?
2
)
PRECISION
-----
164
7.1.3
CENTRAL
DIFFERENCE
ALGORITHM
WITH
O(/?
4
)
PRECISION
-----
165
7.1.4
CENTRAL
DIFFERENCE
ALGORITHMS
OF
HIGHER
PRECISION
-----
166
7.1.5
DERIVING
HIGH-ORDER
HIGH
PRECISION
ALGORITHMS
-----
167
7.1.6
HIGH
PRECISION
FORWARD
AND
BACKWARD
DIFFERENCE
ALGORITHMS
-----
169
7.2
MATLAB
IMPLEMENTATIONS
OF
THE
NUMERICAL
DERIVATIVE
ALGORITHMS
-----
172
7.2.1
IMPLEMENTATION
OFTHEO(/?
2
)
ALGORITHMS
-----
172
7.2.2
IMPLEMENTATION
OF
THE
SEVEN-POINT
CENTRAL
DIFFERENCE
ALGORITHMS
-----
174
7.2.3
IMPLEMENTATION
OF
FORWARD
DIFFERENCE
NUMERICAL
DERIVATIVE
ALGORITHMS
-----
176
7.3
NUMERICAL
DERIVATIVES
OF
ANY
ORDERS
-----
177
7.4
NUMERICAL
PARTIAL
DERIVATIVES
OF
2D
FUNCTIONS
-----
179
7.4.1
GRADIENT
COMPUTATION
-----
179
7.4.2
HIGH
PRECISION
ALGORITHMS
FOR
DERIVATIVES
WITH
RESPECT
TO
A
SINGLE
VARIABLE
-----
181
7.4.3
NUMERICAL
COMPUTATION
OF
MIXED
PARTIAL
DERIVATIVES
-----
183
7.4.4
NUMERICAL
COMPUTATION
OF
HIGH-ORDER
MIXED
PARTIAL
DERIVATIVES
-----
184
7.5
SPLINE
INTERPOLATION
AND
NUMERICAL
DERIVATIVES
-----
185
7.5.1
CUBIC
SPLINE
-----
186
7.5.2
B-SPLINES
-----
189
7.5.3
NUMERICAL
DERIVATIVES
WITH
SPLINES
------
190
7.5.4
UNEQUALLY
SPACED
AND
SCATTERED
SAMPLES
-----
193
7.6
EXERCISES
-----
195
8
NUMERICAL
INTEGRALS
*
197
8.1
NUMERICAL
INTEGRALS
FROM
SAMPLES
-----
197
8.1.1
DIRECT
COMPUTATION
OF
NUMERICAL
DEFINITE
INTEGRALS
-----
197
8.1.2
RECONSTRUCTION
OF
INTEGRAL
FUNCTION
-----
200
8.1.3
HIGH
PRECISION
NUMERICAL
INTEGRATION
ALGORITHM
FOR
EQUALLY
SPACED
SAMPLES
-----
201
8.2
NUMERICAL
INTEGRALS
OF
UNIVARIATE
FUNCTIONS
-----
203
8.2.1
SIMPLE
NUMERICAL
INTEGRAL
PROBLEMS
-----
204
CONTENTS
*
XI
8.2.2
MATLAB
SOLUTIONS
OF
NUMERICAL
INTEGRAL
PROBLEMS
*
205
8.2.3
NUMERICAL
COMPUTATION
OF
IMPROPER
INTEGRALS
*
210
8.2.4
NUMERICAL
INTEGRALS
FOR
INTEGRANDS
WITH
PARAMETERS
*
212
8.2.5
NUMERICAL
SOLUTIONS
OF
INTEGRAL
FUNCTIONS
*
213
8.3
NUMERICAL
COMPUTATION
OF
DOUBLE
INTEGRALS
*
214
8.3.1
COMPUTING
DOUBLE
INTEGRALS
*
215
8.3.2
COMPUTATION
OF
DOUBLE
INTEGRAL
FUNCTIONS
*
216
8.3.3
EVALUATIONS
OF
DOUBLE
INTEGRALS
IN
DIFFERENT
ORDER
*
218
8.4
NUMERICAL
COMPUTATION
OF
MULTIPLE
INTEGRALS
*
219
8.4.1
NUMERICAL
TRIPLE
INTEGRALS
*
219
8.4.2
TRIPLE
INTEGRALS
OF
INTEGRANDS
WITH
PARAMETERS
*
221
8.4.3
MULTIPLE
INTEGRALS
*
222
8.4.4
NUMERICAL
SOLUTIONS
OF
SOME
MULTIPLE
INTEGRALS
WITH
VARIABLE
BOUNDS
-----
224
8.5
OTHER
NUMERICAL
METHODS
FOR
MULTIPLE
INTEGRALS
*
225
8.5.1
NUMERICAL
INTEGRAL
APPROXIMATIONS
WITH
MONTE
CARLO
METHOD
*
226
8.5.2
SPLINE-BASED
INTEGRAL
EVALUATIONS
*
228
8.5.3
NUMERICAL
EVALUATIONS
OF
MULTIPLE
INTEGRALS
*
231
8.6
EXERCISES
*
232
9
INTEGRAL
TRANSFORMS
*
235
9.1
LAPLACE
TRANSFORMS
AND
THEIR
INVERSES
*
235
9.1.1
DEFINITION
AND
PROPERTIES
OF
LAPLACE
TRANSFORM
*
236
9.1.2
COMPUTER
SOLUTIONS
OF
LAPLACE
TRANSFORMS
*
237
9.1.3
SOLVING
DIFFERENTIAL
EQUATIONS
WITH
LAPLACE
TRANSFORM
*
240
9.2
NUMERICAL
SOLUTIONS
OF
LAPLACE
TRANSFORM
PROBLEMS
*
242
9.2.1
NUMERICAL
INVERSE
LAPLACE
TRANSFORM
*
243
9.2.2
IDEAS
OF
FEEDBACK
CONTROL
SYSTEMS
*
243
9.2.3
NUMERICAL
LAPLACE
TRANSFORMS
*
244
9.2.4
COMPUTATION
OF
IRRATIONAL
SYSTEMS
*
247
9.3
FOURIER
TRANSFORMS
AND
THEIR
INVERSES
*
248
9.3.1
DEFINITION
AND
PROPERTIES
OF
FOURIER
TRANSFORMS
*
249
9.3.2
COMPUTER
EVALUATION
OF
FOURIER
TRANSFORM
*
249
9.3.3
FOURIER
SINE
AND
COSINE
TRANSFORMS
*
251
9.3.4
DISCRETE
FOURIER
SINE
AND
COSINE
TRANSFORMS
*
252
9.3.5
FAST
FOURIER
TRANSFORM
*
253
9.4
COMPUTATION
OF
OTHER
INTEGRAL
TRANSFORMS
*
255
9.4.1
MELLIN
TRANSFORM
*
255
9.4.2
COMPUTATION
OF
HANKEL
TRANSFORMS
*
258
9.5
THE
Z
TRANSFORM
AND
ITS
INVERSE
*
259
9.5.1
DEFINITION
AND
PROPERTIES
OF
Z
TRANSFORMS
*
260
9.5.2
COMPUTER
EVALUATION
OF
Z
TRANSFORMS
*
260
XII
*
CONTENTS
9.5.3
9.5.4
9.6
BILATERAL
Z
TRANSFORM
-----
262
NUMERICAL
INVERSE
Z
TRANSFORMS
FOR
RATIONAL
FUNCTIONS
-----
263
EXERCISES
-----
264
10
10.1
10.1.1
10.1.2
10.2
INTRODUCTION
TO
FRACTIONAL
CALCULUS
*
267
DEFINITIONS
IN
FRACTIONAL
CALCULUS
-----
268
WHY
FRACTIONAL
CALCULUS?
-----
268
DEFINITIONS
-----
269
PROPERTIES
AND
RELATIONSHIPS
AMONG
DIFFERENT
FRACTIONAL
CALCULUS
DEFINITIONS
-----
270
10.3
10.3.1
10.3.2
10.3.3
10.4
10.5
10.5.1
10.5.2
10.5.3
10.6
NUMERICAL
IMPLEMENTATION
OF
GRUNWALD-LETNIKOV
DERIVATIVES
-----
272
SIMPLE
GRUNWALD-LETNIKOV
DEFINITION
EVALUATION
-----
272
HIGH
PRECISION
ALGORITHMS
AND
IMPLEMENTATION
-----
272
QUANTITATIVE
COMPARISONS
OF
DIFFERENT
ALGORITHMS
-----
277
NUMERICAL
COMPUTATION
OF
CAPUTO
DERIVATIVES
-----
279
OUSTALOUP
FILTER
ALGORITHMS
AND
APPLICATIONS
-----
282
OUSTALOUP
FILTER
APPROXIMATIONS
*
283
FILTER
FOR
CAPUTO
DERIVATIVE
FITTING
-----
285
SIMULINK-BASED
CAPUTO
DERIVATIVE
COMPUTATION
*
286
NUMERICAL
COMPUTATION
OF
EVEN
HIGHER-ORDER
DERIVATIVES
AND
INTEGRALS
-----
288
10.7
EXERCISES
-----
290
BIBLIOGRAPHY
*
291
MATLAB
FUNCTION
INDEX
*
293
INDEX
*
297 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Xue, Dingyu |
author_GND | (DE-588)1098160967 |
author_facet | Xue, Dingyu |
author_role | aut |
author_sort | Xue, Dingyu |
author_variant | d x dx |
building | Verbundindex |
bvnumber | BV046727521 |
classification_rvk | ST 601 ST 620 SK 400 SK 399 |
ctrlnum | (OCoLC)1110051529 (DE-599)DNB1190749920 |
dewey-full | 515.0285 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.0285 |
dewey-search | 515.0285 |
dewey-sort | 3515.0285 |
dewey-tens | 510 - Mathematics |
discipline | Informatik Mathematik |
discipline_str_mv | Informatik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02096nam a2200529 c 4500</leader><controlfield tag="001">BV046727521</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20221117 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">200519s2020 gw a||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1190749920</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110663624</subfield><subfield code="c">Broschur</subfield><subfield code="9">978-3-11-066362-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110663627</subfield><subfield code="9">3-11-066362-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1110051529</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1190749920</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.0285</subfield><subfield code="2">23/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 601</subfield><subfield code="0">(DE-625)143682:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 620</subfield><subfield code="0">(DE-625)143684:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 400</subfield><subfield code="0">(DE-625)143237:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 399</subfield><subfield code="0">(DE-625)143236:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 601 M35</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xue, Dingyu</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1098160967</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Calculus problem solutions with MATLAB</subfield><subfield code="c">Dingyü Xue</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Beijing]</subfield><subfield code="b">Tsinghua University Press</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 300 Seiten</subfield><subfield code="b">Illustrationen</subfield><subfield code="c">24 cm, 535 g</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">De Gruyter STEM</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">MATLAB</subfield><subfield code="0">(DE-588)4329066-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Analysis</subfield><subfield code="0">(DE-588)4001865-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Analysis</subfield><subfield code="0">(DE-588)4001865-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">MATLAB</subfield><subfield code="0">(DE-588)4329066-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Walter de Gruyter GmbH & Co. KG</subfield><subfield code="0">(DE-588)10095502-2</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-3-11-066697-7</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-3-11-066375-4</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">B:DE-101</subfield><subfield code="q">application/pdf</subfield><subfield code="u">https://d-nb.info/1190749920/04</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032137632&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032137632</subfield></datafield></record></collection> |
id | DE-604.BV046727521 |
illustrated | Illustrated |
index_date | 2024-07-03T14:35:40Z |
indexdate | 2024-07-10T08:52:12Z |
institution | BVB |
institution_GND | (DE-588)10095502-2 |
isbn | 9783110663624 3110663627 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032137632 |
oclc_num | 1110051529 |
open_access_boolean | |
owner | DE-634 DE-1050 DE-83 DE-703 DE-19 DE-BY-UBM DE-706 DE-20 DE-11 |
owner_facet | DE-634 DE-1050 DE-83 DE-703 DE-19 DE-BY-UBM DE-706 DE-20 DE-11 |
physical | XII, 300 Seiten Illustrationen 24 cm, 535 g |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | De Gruyter Tsinghua University Press |
record_format | marc |
series2 | De Gruyter STEM |
spelling | Xue, Dingyu Verfasser (DE-588)1098160967 aut Calculus problem solutions with MATLAB Dingyü Xue Berlin De Gruyter [2020] [Beijing] Tsinghua University Press [2020] © 2020 XII, 300 Seiten Illustrationen 24 cm, 535 g txt rdacontent n rdamedia nc rdacarrier De Gruyter STEM MATLAB (DE-588)4329066-8 gnd rswk-swf Analysis (DE-588)4001865-9 gnd rswk-swf Analysis (DE-588)4001865-9 s MATLAB (DE-588)4329066-8 s DE-604 Walter de Gruyter GmbH & Co. KG (DE-588)10095502-2 pbl Erscheint auch als Online-Ausgabe, PDF 978-3-11-066697-7 Erscheint auch als Online-Ausgabe, EPUB 978-3-11-066375-4 B:DE-101 application/pdf https://d-nb.info/1190749920/04 Inhaltsverzeichnis DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032137632&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Xue, Dingyu Calculus problem solutions with MATLAB MATLAB (DE-588)4329066-8 gnd Analysis (DE-588)4001865-9 gnd |
subject_GND | (DE-588)4329066-8 (DE-588)4001865-9 |
title | Calculus problem solutions with MATLAB |
title_auth | Calculus problem solutions with MATLAB |
title_exact_search | Calculus problem solutions with MATLAB |
title_exact_search_txtP | Calculus problem solutions with MATLAB |
title_full | Calculus problem solutions with MATLAB Dingyü Xue |
title_fullStr | Calculus problem solutions with MATLAB Dingyü Xue |
title_full_unstemmed | Calculus problem solutions with MATLAB Dingyü Xue |
title_short | Calculus problem solutions with MATLAB |
title_sort | calculus problem solutions with matlab |
topic | MATLAB (DE-588)4329066-8 gnd Analysis (DE-588)4001865-9 gnd |
topic_facet | MATLAB Analysis |
url | https://d-nb.info/1190749920/04 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032137632&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT xuedingyu calculusproblemsolutionswithmatlab AT walterdegruytergmbhcokg calculusproblemsolutionswithmatlab |
Es ist kein Print-Exemplar vorhanden.
Inhaltsverzeichnis