Applied machine learning with Python:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Milano
BUP, Bocconi University Press
March 2020
|
Ausgabe: | First international edition |
Schlagworte: | |
Online-Zugang: | FHD01 TUM01 |
Beschreibung: | 1 Online-Ressource (xvii, 182 Seiten) |
ISBN: | 9788831322140 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV046719768 | ||
003 | DE-604 | ||
005 | 20200722 | ||
007 | cr|uuu---uuuuu | ||
008 | 200513s2020 |||| o||u| ||||||eng d | ||
020 | |a 9788831322140 |c Pdf International Edition |9 978-88-31322-14-0 | ||
035 | |a (OCoLC)1155083440 | ||
035 | |a (DE-599)BVBBV046719768 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1050 |a DE-91G | ||
084 | |a DAT 366 |2 stub | ||
084 | |a DAT 708 |2 stub | ||
100 | 1 | |a Giussani, Andrea |e Verfasser |4 aut | |
245 | 1 | 0 | |a Applied machine learning with Python |c Andrea Giussani |
250 | |a First international edition | ||
264 | 1 | |a Milano |b BUP, Bocconi University Press |c March 2020 | |
300 | |a 1 Online-Ressource (xvii, 182 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
505 | 8 | |a APPLIED MACHINE LEARNING WITH PYTHON -- Contents -- List of Figures -- Preface -- Chapter 1. Introduction to Machine Learning -- 1.1 A simple supervised model: Nearest Neighbor -- 1.2 Preprocessing -- 1.3 Methods for Dealing with Imbalanced Data -- 1.4 Reducing Dimensionality: Principal Component Analysis -- Chapter 2. Linear Models for Machine Learning -- 2.1 Linear Regression -- 2.2 Shrinkage Methods -- 2.3 Robust Regression -- 2.4 Logistic Regression -- 2.5 Linear Support Vector Machine -- 2.6 Beyond Linearity: Kernelized Models | |
505 | 8 | |a Chapter 3. Beyond Linearity: Ensemble Methods for Machine Learning -- 3.1 Introduction -- 3.2 Ensemble Methods -- 3.3 Random Forests -- 3.4 Boosting Methods -- Chapter 4. An Introduction to Modern Machine Learning Techniques -- 4.1 Introduction to Natural language Processing -- 4.2 Introduction to Deep Learning -- Appendices -- Appendix A.A crash course in Python -- A.1 Building Blocks in Python -- A.2 Data Structure in Python -- A.3 Loops in Python -- A.4 Advanced Data Structure in Python -- A.5 Advanced Concepts on Functions -- A.6 Introduction to Object-Oriented Programming | |
505 | 8 | |a Appendix B. Mathematics behind the skip-gram model -- Index -- Bibliography -- Back Cover | |
650 | 4 | |a Machine learning | |
650 | 4 | |a Python (Computer program language) | |
650 | 7 | |a Machine learning |2 fast | |
650 | 7 | |a Python (Computer program language) |2 fast | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, International Edition |z 978-88-31322-04-1 |
912 | |a ZDB-30-PQE |a ZDB-4-NLEBK | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032130009 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=6110795 |l FHD01 |p ZDB-30-PQE |q FHD01_PQE_Kauf |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2376219 |l TUM01 |p ZDB-4-NLEBK |q TUM_Einzelkauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181459474317312 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Giussani, Andrea |
author_facet | Giussani, Andrea |
author_role | aut |
author_sort | Giussani, Andrea |
author_variant | a g ag |
building | Verbundindex |
bvnumber | BV046719768 |
classification_tum | DAT 366 DAT 708 |
collection | ZDB-30-PQE ZDB-4-NLEBK |
contents | APPLIED MACHINE LEARNING WITH PYTHON -- Contents -- List of Figures -- Preface -- Chapter 1. Introduction to Machine Learning -- 1.1 A simple supervised model: Nearest Neighbor -- 1.2 Preprocessing -- 1.3 Methods for Dealing with Imbalanced Data -- 1.4 Reducing Dimensionality: Principal Component Analysis -- Chapter 2. Linear Models for Machine Learning -- 2.1 Linear Regression -- 2.2 Shrinkage Methods -- 2.3 Robust Regression -- 2.4 Logistic Regression -- 2.5 Linear Support Vector Machine -- 2.6 Beyond Linearity: Kernelized Models Chapter 3. Beyond Linearity: Ensemble Methods for Machine Learning -- 3.1 Introduction -- 3.2 Ensemble Methods -- 3.3 Random Forests -- 3.4 Boosting Methods -- Chapter 4. An Introduction to Modern Machine Learning Techniques -- 4.1 Introduction to Natural language Processing -- 4.2 Introduction to Deep Learning -- Appendices -- Appendix A.A crash course in Python -- A.1 Building Blocks in Python -- A.2 Data Structure in Python -- A.3 Loops in Python -- A.4 Advanced Data Structure in Python -- A.5 Advanced Concepts on Functions -- A.6 Introduction to Object-Oriented Programming Appendix B. Mathematics behind the skip-gram model -- Index -- Bibliography -- Back Cover |
ctrlnum | (OCoLC)1155083440 (DE-599)BVBBV046719768 |
discipline | Informatik |
discipline_str_mv | Informatik |
edition | First international edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02789nmm a2200421 c 4500</leader><controlfield tag="001">BV046719768</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200722 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200513s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9788831322140</subfield><subfield code="c">Pdf International Edition</subfield><subfield code="9">978-88-31322-14-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1155083440</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046719768</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1050</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 366</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 708</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Giussani, Andrea</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Applied machine learning with Python</subfield><subfield code="c">Andrea Giussani</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First international edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Milano</subfield><subfield code="b">BUP, Bocconi University Press</subfield><subfield code="c">March 2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xvii, 182 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">APPLIED MACHINE LEARNING WITH PYTHON -- Contents -- List of Figures -- Preface -- Chapter 1. Introduction to Machine Learning -- 1.1 A simple supervised model: Nearest Neighbor -- 1.2 Preprocessing -- 1.3 Methods for Dealing with Imbalanced Data -- 1.4 Reducing Dimensionality: Principal Component Analysis -- Chapter 2. Linear Models for Machine Learning -- 2.1 Linear Regression -- 2.2 Shrinkage Methods -- 2.3 Robust Regression -- 2.4 Logistic Regression -- 2.5 Linear Support Vector Machine -- 2.6 Beyond Linearity: Kernelized Models</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 3. Beyond Linearity: Ensemble Methods for Machine Learning -- 3.1 Introduction -- 3.2 Ensemble Methods -- 3.3 Random Forests -- 3.4 Boosting Methods -- Chapter 4. An Introduction to Modern Machine Learning Techniques -- 4.1 Introduction to Natural language Processing -- 4.2 Introduction to Deep Learning -- Appendices -- Appendix A.A crash course in Python -- A.1 Building Blocks in Python -- A.2 Data Structure in Python -- A.3 Loops in Python -- A.4 Advanced Data Structure in Python -- A.5 Advanced Concepts on Functions -- A.6 Introduction to Object-Oriented Programming</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Appendix B. Mathematics behind the skip-gram model -- Index -- Bibliography -- Back Cover</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Machine learning</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Python (Computer program language)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, International Edition</subfield><subfield code="z">978-88-31322-04-1</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield><subfield code="a">ZDB-4-NLEBK</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032130009</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=6110795</subfield><subfield code="l">FHD01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">FHD01_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2376219</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-4-NLEBK</subfield><subfield code="q">TUM_Einzelkauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046719768 |
illustrated | Not Illustrated |
index_date | 2024-07-03T14:33:15Z |
indexdate | 2024-07-10T08:51:59Z |
institution | BVB |
isbn | 9788831322140 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032130009 |
oclc_num | 1155083440 |
open_access_boolean | |
owner | DE-1050 DE-91G DE-BY-TUM |
owner_facet | DE-1050 DE-91G DE-BY-TUM |
physical | 1 Online-Ressource (xvii, 182 Seiten) |
psigel | ZDB-30-PQE ZDB-4-NLEBK ZDB-30-PQE FHD01_PQE_Kauf ZDB-4-NLEBK TUM_Einzelkauf |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | BUP, Bocconi University Press |
record_format | marc |
spelling | Giussani, Andrea Verfasser aut Applied machine learning with Python Andrea Giussani First international edition Milano BUP, Bocconi University Press March 2020 1 Online-Ressource (xvii, 182 Seiten) txt rdacontent c rdamedia cr rdacarrier APPLIED MACHINE LEARNING WITH PYTHON -- Contents -- List of Figures -- Preface -- Chapter 1. Introduction to Machine Learning -- 1.1 A simple supervised model: Nearest Neighbor -- 1.2 Preprocessing -- 1.3 Methods for Dealing with Imbalanced Data -- 1.4 Reducing Dimensionality: Principal Component Analysis -- Chapter 2. Linear Models for Machine Learning -- 2.1 Linear Regression -- 2.2 Shrinkage Methods -- 2.3 Robust Regression -- 2.4 Logistic Regression -- 2.5 Linear Support Vector Machine -- 2.6 Beyond Linearity: Kernelized Models Chapter 3. Beyond Linearity: Ensemble Methods for Machine Learning -- 3.1 Introduction -- 3.2 Ensemble Methods -- 3.3 Random Forests -- 3.4 Boosting Methods -- Chapter 4. An Introduction to Modern Machine Learning Techniques -- 4.1 Introduction to Natural language Processing -- 4.2 Introduction to Deep Learning -- Appendices -- Appendix A.A crash course in Python -- A.1 Building Blocks in Python -- A.2 Data Structure in Python -- A.3 Loops in Python -- A.4 Advanced Data Structure in Python -- A.5 Advanced Concepts on Functions -- A.6 Introduction to Object-Oriented Programming Appendix B. Mathematics behind the skip-gram model -- Index -- Bibliography -- Back Cover Machine learning Python (Computer program language) Machine learning fast Python (Computer program language) fast Erscheint auch als Druck-Ausgabe, International Edition 978-88-31322-04-1 |
spellingShingle | Giussani, Andrea Applied machine learning with Python APPLIED MACHINE LEARNING WITH PYTHON -- Contents -- List of Figures -- Preface -- Chapter 1. Introduction to Machine Learning -- 1.1 A simple supervised model: Nearest Neighbor -- 1.2 Preprocessing -- 1.3 Methods for Dealing with Imbalanced Data -- 1.4 Reducing Dimensionality: Principal Component Analysis -- Chapter 2. Linear Models for Machine Learning -- 2.1 Linear Regression -- 2.2 Shrinkage Methods -- 2.3 Robust Regression -- 2.4 Logistic Regression -- 2.5 Linear Support Vector Machine -- 2.6 Beyond Linearity: Kernelized Models Chapter 3. Beyond Linearity: Ensemble Methods for Machine Learning -- 3.1 Introduction -- 3.2 Ensemble Methods -- 3.3 Random Forests -- 3.4 Boosting Methods -- Chapter 4. An Introduction to Modern Machine Learning Techniques -- 4.1 Introduction to Natural language Processing -- 4.2 Introduction to Deep Learning -- Appendices -- Appendix A.A crash course in Python -- A.1 Building Blocks in Python -- A.2 Data Structure in Python -- A.3 Loops in Python -- A.4 Advanced Data Structure in Python -- A.5 Advanced Concepts on Functions -- A.6 Introduction to Object-Oriented Programming Appendix B. Mathematics behind the skip-gram model -- Index -- Bibliography -- Back Cover Machine learning Python (Computer program language) Machine learning fast Python (Computer program language) fast |
title | Applied machine learning with Python |
title_auth | Applied machine learning with Python |
title_exact_search | Applied machine learning with Python |
title_exact_search_txtP | Applied machine learning with Python |
title_full | Applied machine learning with Python Andrea Giussani |
title_fullStr | Applied machine learning with Python Andrea Giussani |
title_full_unstemmed | Applied machine learning with Python Andrea Giussani |
title_short | Applied machine learning with Python |
title_sort | applied machine learning with python |
topic | Machine learning Python (Computer program language) Machine learning fast Python (Computer program language) fast |
topic_facet | Machine learning Python (Computer program language) |
work_keys_str_mv | AT giussaniandrea appliedmachinelearningwithpython |