Differential equation solutions with MATLAB:
This book focuses the solutions of differential equations with MATLAB. Analytical solutions of differential equations are explored first, followed by the numerical solutions of different types of ordinary differential equations (ODEs), as well as the universal block diagram based schemes for ODEs. B...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston
De Gruyter
[2020]
|
Schriftenreihe: | De Gruyter STEM
|
Schlagworte: | |
Online-Zugang: | DE-1043 DE-1046 DE-858 DE-859 DE-860 DE-863 DE-862 UB01 DE-706 DE-739 Volltext |
Zusammenfassung: | This book focuses the solutions of differential equations with MATLAB. Analytical solutions of differential equations are explored first, followed by the numerical solutions of different types of ordinary differential equations (ODEs), as well as the universal block diagram based schemes for ODEs. Boundary value ODEs, fractional-order ODEs and partial differential equations are also discussed |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed 24. Apr 2020) |
Beschreibung: | 1 Online Ressource (XIII, 438 Seiten) |
ISBN: | 9783110675252 9783110675313 |
DOI: | 10.1515/9783110675252 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV046713560 | ||
003 | DE-604 | ||
005 | 20250326 | ||
007 | cr|uuu---uuuuu | ||
008 | 200511s2020 xx o|||| 00||| eng d | ||
020 | |a 9783110675252 |c Online, pdf |9 978-3-11-067525-2 | ||
020 | |a 9783110675313 |c Online, epub |9 978-3-11-067531-3 | ||
024 | 7 | |a 10.1515/9783110675252 |2 doi | |
035 | |a (ZDB-23-DGG)9783110675252 | ||
035 | |a (OCoLC)1164614237 | ||
035 | |a (DE-599)BVBBV046713560 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-859 |a DE-860 |a DE-739 |a DE-1043 |a DE-858 |a DE-83 |a DE-706 |a DE-355 |a DE-863 |a DE-862 | ||
084 | |a SK 500 |0 (DE-625)143243: |2 rvk | ||
084 | |a ST 601 |0 (DE-625)143682: |2 rvk | ||
100 | 1 | |a Xue, Dingyu |e Verfasser |0 (DE-588)1098160967 |4 aut | |
245 | 1 | 0 | |a Differential equation solutions with MATLAB |c Dingyü Xue |
264 | 1 | |a Berlin ; Boston |b De Gruyter |c [2020] | |
264 | 4 | |c © 2020 | |
300 | |a 1 Online Ressource (XIII, 438 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a De Gruyter STEM | |
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed 24. Apr 2020) | ||
520 | |a This book focuses the solutions of differential equations with MATLAB. Analytical solutions of differential equations are explored first, followed by the numerical solutions of different types of ordinary differential equations (ODEs), as well as the universal block diagram based schemes for ODEs. Boundary value ODEs, fractional-order ODEs and partial differential equations are also discussed | ||
546 | |a In English | ||
650 | 7 | |a COMPUTERS / Programming / General |2 bisacsh | |
650 | 0 | 7 | |a Differentialgleichung |0 (DE-588)4012249-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a MATLAB |0 (DE-588)4329066-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Differentialgleichung |0 (DE-588)4012249-9 |D s |
689 | 0 | 1 | |a MATLAB |0 (DE-588)4329066-8 |D s |
689 | 0 | |5 DE-604 | |
710 | 2 | |a Tsinghua University Press |4 isb | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-11-067524-5 |
856 | 4 | 0 | |u https://doi.org/10.1515/9783110675252 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG | ||
912 | |a ZDB-23-DEI | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-032123930 | |
966 | e | |u https://doi.org/10.1515/9783110675252 |l DE-1043 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110675252 |l DE-1046 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110675252 |l DE-858 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110675252 |l DE-859 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110675252 |l DE-860 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110675252 |l DE-863 |p ZDB-23-DEI |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110675252 |l DE-862 |p ZDB-23-DEI |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110675252 |l UB01 |p ZDB-23-DGG |q UBR_Pick&Choose 2022 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110675252 |l DE-706 |p ZDB-23-DEI |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110675252 |l DE-739 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1827714557756309505 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Xue, Dingyu |
author_GND | (DE-588)1098160967 |
author_facet | Xue, Dingyu |
author_role | aut |
author_sort | Xue, Dingyu |
author_variant | d x dx |
building | Verbundindex |
bvnumber | BV046713560 |
classification_rvk | SK 500 ST 601 |
collection | ZDB-23-DGG ZDB-23-DEI |
ctrlnum | (ZDB-23-DGG)9783110675252 (OCoLC)1164614237 (DE-599)BVBBV046713560 |
discipline | Informatik Mathematik |
discipline_str_mv | Informatik Mathematik |
doi_str_mv | 10.1515/9783110675252 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV046713560</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20250326</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200511s2020 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110675252</subfield><subfield code="c">Online, pdf</subfield><subfield code="9">978-3-11-067525-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110675313</subfield><subfield code="c">Online, epub</subfield><subfield code="9">978-3-11-067531-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110675252</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9783110675252</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1164614237</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046713560</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 500</subfield><subfield code="0">(DE-625)143243:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 601</subfield><subfield code="0">(DE-625)143682:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xue, Dingyu</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1098160967</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Differential equation solutions with MATLAB</subfield><subfield code="c">Dingyü Xue</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Boston</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online Ressource (XIII, 438 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">De Gruyter STEM</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed 24. Apr 2020)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book focuses the solutions of differential equations with MATLAB. Analytical solutions of differential equations are explored first, followed by the numerical solutions of different types of ordinary differential equations (ODEs), as well as the universal block diagram based schemes for ODEs. Boundary value ODEs, fractional-order ODEs and partial differential equations are also discussed</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS / Programming / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">MATLAB</subfield><subfield code="0">(DE-588)4329066-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">MATLAB</subfield><subfield code="0">(DE-588)4329066-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Tsinghua University Press</subfield><subfield code="4">isb</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-11-067524-5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9783110675252</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DEI</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032123930</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110675252</subfield><subfield code="l">DE-1043</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110675252</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110675252</subfield><subfield code="l">DE-858</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110675252</subfield><subfield code="l">DE-859</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110675252</subfield><subfield code="l">DE-860</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110675252</subfield><subfield code="l">DE-863</subfield><subfield code="p">ZDB-23-DEI</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110675252</subfield><subfield code="l">DE-862</subfield><subfield code="p">ZDB-23-DEI</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110675252</subfield><subfield code="l">UB01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UBR_Pick&Choose 2022</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110675252</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-23-DEI</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110675252</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046713560 |
illustrated | Not Illustrated |
index_date | 2024-07-03T14:31:27Z |
indexdate | 2025-03-27T04:00:31Z |
institution | BVB |
isbn | 9783110675252 9783110675313 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032123930 |
oclc_num | 1164614237 |
open_access_boolean | |
owner | DE-1046 DE-859 DE-860 DE-739 DE-1043 DE-858 DE-83 DE-706 DE-355 DE-BY-UBR DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
owner_facet | DE-1046 DE-859 DE-860 DE-739 DE-1043 DE-858 DE-83 DE-706 DE-355 DE-BY-UBR DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
physical | 1 Online Ressource (XIII, 438 Seiten) |
psigel | ZDB-23-DGG ZDB-23-DEI ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FCO_PDA_DGG ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DGG UBR_Pick&Choose 2022 ZDB-23-DGG UPA_PDA_DGG |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | De Gruyter |
record_format | marc |
series2 | De Gruyter STEM |
spellingShingle | Xue, Dingyu Differential equation solutions with MATLAB COMPUTERS / Programming / General bisacsh Differentialgleichung (DE-588)4012249-9 gnd MATLAB (DE-588)4329066-8 gnd |
subject_GND | (DE-588)4012249-9 (DE-588)4329066-8 |
title | Differential equation solutions with MATLAB |
title_auth | Differential equation solutions with MATLAB |
title_exact_search | Differential equation solutions with MATLAB |
title_exact_search_txtP | Differential equation solutions with MATLAB |
title_full | Differential equation solutions with MATLAB Dingyü Xue |
title_fullStr | Differential equation solutions with MATLAB Dingyü Xue |
title_full_unstemmed | Differential equation solutions with MATLAB Dingyü Xue |
title_short | Differential equation solutions with MATLAB |
title_sort | differential equation solutions with matlab |
topic | COMPUTERS / Programming / General bisacsh Differentialgleichung (DE-588)4012249-9 gnd MATLAB (DE-588)4329066-8 gnd |
topic_facet | COMPUTERS / Programming / General Differentialgleichung MATLAB |
url | https://doi.org/10.1515/9783110675252 |
work_keys_str_mv | AT xuedingyu differentialequationsolutionswithmatlab AT tsinghuauniversitypress differentialequationsolutionswithmatlab |