Statistical Inference via Convex Optimization:
This authoritative book draws on the latest research to explore the interplay of high-dimensional statistics with optimization. Through an accessible analysis of fundamental problems of hypothesis testing and signal recovery, Anatoli Juditsky and Arkadi Nemirovski show how convex optimization theory...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, NJ
Princeton University Press
[2020]
|
Schriftenreihe: | Princeton Series in Applied Mathematics
69 |
Schlagworte: | |
Online-Zugang: | FAB01 FAW01 FHA01 FHR01 FKE01 FLA01 TUM01 UBY01 UPA01 FCO01 Volltext |
Zusammenfassung: | This authoritative book draws on the latest research to explore the interplay of high-dimensional statistics with optimization. Through an accessible analysis of fundamental problems of hypothesis testing and signal recovery, Anatoli Juditsky and Arkadi Nemirovski show how convex optimization theory can be used to devise and analyze near-optimal statistical inferences.Statistical Inference via Convex Optimization is an essential resource for optimization specialists who are new to statistics and its applications, and for data scientists who want to improve their optimization methods. Juditsky and Nemirovski provide the first systematic treatment of the statistical techniques that have arisen from advances in the theory of optimization. They focus on four well-known statistical problems—sparse recovery, hypothesis testing, and recovery from indirect observations of both signals and functions of signals—demonstrating how they can be solved more efficiently as convex optimization problems. The emphasis throughout is on achieving the best possible statistical performance. The construction of inference routines and the quantification of their statistical performance are given by efficient computation rather than by analytical derivation typical of more conventional statistical approaches. In addition to being computation-friendly, the methods described in this book enable practitioners to handle numerous situations too difficult for closed analytical form analysis, such as composite hypothesis testing and signal recovery in inverse problems.Statistical Inference via Convex Optimization features exercises with solutions along with extensive appendixes, making it ideal for use as a graduate text |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed 24. Apr 2020) |
Beschreibung: | 1 online resource (656 pages) 40 b/w illus |
ISBN: | 9780691200316 |
DOI: | 10.1515/9780691200316 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV046713178 | ||
003 | DE-604 | ||
005 | 20201021 | ||
007 | cr|uuu---uuuuu | ||
008 | 200511s2020 |||| o||u| ||||||eng d | ||
020 | |a 9780691200316 |c Online |9 978-0-691-20031-6 | ||
024 | 7 | |a 10.1515/9780691200316 |2 doi | |
035 | |a (ZDB-23-DGG)9780691200316 | ||
035 | |a (OCoLC)1164604412 | ||
035 | |a (DE-599)BVBBV046713178 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-Aug4 |a DE-859 |a DE-860 |a DE-739 |a DE-91 |a DE-898 |a DE-1043 |a DE-706 |a DE-858 | ||
084 | |a MAT 625f |2 stub | ||
084 | |a MAT 915f |2 stub | ||
100 | 1 | |a Juditsky, Anatoli |d 1962- |e Verfasser |0 (DE-588)171869257 |4 aut | |
245 | 1 | 0 | |a Statistical Inference via Convex Optimization |c Anatoli Juditsky, Arkadi Nemirovski |
264 | 1 | |a Princeton, NJ |b Princeton University Press |c [2020] | |
264 | 4 | |c © 2020 | |
300 | |a 1 online resource (656 pages) |b 40 b/w illus | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Princeton Series in Applied Mathematics |v 69 | |
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed 24. Apr 2020) | ||
520 | |a This authoritative book draws on the latest research to explore the interplay of high-dimensional statistics with optimization. Through an accessible analysis of fundamental problems of hypothesis testing and signal recovery, Anatoli Juditsky and Arkadi Nemirovski show how convex optimization theory can be used to devise and analyze near-optimal statistical inferences.Statistical Inference via Convex Optimization is an essential resource for optimization specialists who are new to statistics and its applications, and for data scientists who want to improve their optimization methods. Juditsky and Nemirovski provide the first systematic treatment of the statistical techniques that have arisen from advances in the theory of optimization. They focus on four well-known statistical problems—sparse recovery, hypothesis testing, and recovery from indirect observations of both signals and functions of signals—demonstrating how they can be solved more efficiently as convex optimization problems. The emphasis throughout is on achieving the best possible statistical performance. The construction of inference routines and the quantification of their statistical performance are given by efficient computation rather than by analytical derivation typical of more conventional statistical approaches. In addition to being computation-friendly, the methods described in this book enable practitioners to handle numerous situations too difficult for closed analytical form analysis, such as composite hypothesis testing and signal recovery in inverse problems.Statistical Inference via Convex Optimization features exercises with solutions along with extensive appendixes, making it ideal for use as a graduate text | ||
546 | |a In English | ||
650 | 4 | |a All of Nonparametric Statistics | |
650 | 4 | |a Asymptotic Methods in Statistical Decision Theory | |
650 | 4 | |a Dantzig selector | |
650 | 4 | |a Gaussian observations | |
650 | 4 | |a Has'minskii | |
650 | 4 | |a Hellinger distance | |
650 | 4 | |a Ibragimov | |
650 | 4 | |a Introduction to Nonparametric Estimation | |
650 | 4 | |a Lagrange duality | |
650 | 4 | |a Le Cam | |
650 | 4 | |a N-convex function | |
650 | 4 | |a Statistical Estimation | |
650 | 4 | |a Tsybakov | |
650 | 4 | |a Wasserman | |
650 | 4 | |a bisection algorithm | |
650 | 4 | |a conic programming | |
650 | 4 | |a convex sets | |
650 | 4 | |a duality | |
650 | 4 | |a ell-1-norm minimization | |
650 | 4 | |a estimating functions | |
650 | 4 | |a lasso selector | |
650 | 4 | |a minimization | |
650 | 4 | |a saddle points | |
650 | 4 | |a signal plus noise | |
650 | 4 | |a signal-to-noise | |
650 | 4 | |a unobserved signal | |
650 | 4 | |a variable selection | |
650 | 7 | |a MATHEMATICS / Optimization |2 bisacsh | |
700 | 1 | |a Nemirovskij, Arkadij S. |d 1947- |0 (DE-588)12209395X |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-691-19729-6 |
856 | 4 | 0 | |u https://doi.org/10.1515/9780691200316 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG |a ZDB-23-DMA | ||
940 | 1 | |q ZDB-23-DMA20 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032123548 | ||
966 | e | |u https://doi.org/10.1515/9780691200316?locatt=mode:legacy |l FAB01 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691200316?locatt=mode:legacy |l FAW01 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691200316?locatt=mode:legacy |l FHA01 |p ZDB-23-DGG |q FHA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691200316?locatt=mode:legacy |l FHR01 |p ZDB-23-DMA |q FHR_ZDB-23-DMA20 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691200316?locatt=mode:legacy |l FKE01 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691200316?locatt=mode:legacy |l FLA01 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691200316?locatt=mode:legacy |l TUM01 |p ZDB-23-DMA |q TUM_Paketkauf |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691200316?locatt=mode:legacy |l UBY01 |p ZDB-23-DMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691200316?locatt=mode:legacy |l UPA01 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691200316?locatt=mode:legacy |l FCO01 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181448105656320 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Juditsky, Anatoli 1962- Nemirovskij, Arkadij S. 1947- |
author_GND | (DE-588)171869257 (DE-588)12209395X |
author_facet | Juditsky, Anatoli 1962- Nemirovskij, Arkadij S. 1947- |
author_role | aut aut |
author_sort | Juditsky, Anatoli 1962- |
author_variant | a j aj a s n as asn |
building | Verbundindex |
bvnumber | BV046713178 |
classification_tum | MAT 625f MAT 915f |
collection | ZDB-23-DGG ZDB-23-DMA |
ctrlnum | (ZDB-23-DGG)9780691200316 (OCoLC)1164604412 (DE-599)BVBBV046713178 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1515/9780691200316 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05546nmm a2200877zcb4500</leader><controlfield tag="001">BV046713178</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20201021 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200511s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691200316</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-691-20031-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9780691200316</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9780691200316</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1164604412</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046713178</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-858</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 625f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 915f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Juditsky, Anatoli</subfield><subfield code="d">1962-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)171869257</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Statistical Inference via Convex Optimization</subfield><subfield code="c">Anatoli Juditsky, Arkadi Nemirovski</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, NJ</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (656 pages)</subfield><subfield code="b">40 b/w illus</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Princeton Series in Applied Mathematics</subfield><subfield code="v">69</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed 24. Apr 2020)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This authoritative book draws on the latest research to explore the interplay of high-dimensional statistics with optimization. Through an accessible analysis of fundamental problems of hypothesis testing and signal recovery, Anatoli Juditsky and Arkadi Nemirovski show how convex optimization theory can be used to devise and analyze near-optimal statistical inferences.Statistical Inference via Convex Optimization is an essential resource for optimization specialists who are new to statistics and its applications, and for data scientists who want to improve their optimization methods. Juditsky and Nemirovski provide the first systematic treatment of the statistical techniques that have arisen from advances in the theory of optimization. They focus on four well-known statistical problems—sparse recovery, hypothesis testing, and recovery from indirect observations of both signals and functions of signals—demonstrating how they can be solved more efficiently as convex optimization problems. The emphasis throughout is on achieving the best possible statistical performance. The construction of inference routines and the quantification of their statistical performance are given by efficient computation rather than by analytical derivation typical of more conventional statistical approaches. In addition to being computation-friendly, the methods described in this book enable practitioners to handle numerous situations too difficult for closed analytical form analysis, such as composite hypothesis testing and signal recovery in inverse problems.Statistical Inference via Convex Optimization features exercises with solutions along with extensive appendixes, making it ideal for use as a graduate text</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">All of Nonparametric Statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asymptotic Methods in Statistical Decision Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dantzig selector</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gaussian observations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Has'minskii</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hellinger distance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ibragimov</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Introduction to Nonparametric Estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lagrange duality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Le Cam</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">N-convex function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical Estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tsybakov</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wasserman</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bisection algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">conic programming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">convex sets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">duality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ell-1-norm minimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">estimating functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">lasso selector</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">minimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">saddle points</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">signal plus noise</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">signal-to-noise</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">unobserved signal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">variable selection</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Optimization</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nemirovskij, Arkadij S.</subfield><subfield code="d">1947-</subfield><subfield code="0">(DE-588)12209395X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-691-19729-6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9780691200316</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-DMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-23-DMA20</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032123548</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691200316?locatt=mode:legacy</subfield><subfield code="l">FAB01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691200316?locatt=mode:legacy</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691200316?locatt=mode:legacy</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FHA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691200316?locatt=mode:legacy</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">FHR_ZDB-23-DMA20</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691200316?locatt=mode:legacy</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691200316?locatt=mode:legacy</subfield><subfield code="l">FLA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691200316?locatt=mode:legacy</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">TUM_Paketkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691200316?locatt=mode:legacy</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691200316?locatt=mode:legacy</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691200316?locatt=mode:legacy</subfield><subfield code="l">FCO01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046713178 |
illustrated | Not Illustrated |
index_date | 2024-07-03T14:31:27Z |
indexdate | 2024-07-10T08:51:49Z |
institution | BVB |
isbn | 9780691200316 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032123548 |
oclc_num | 1164604412 |
open_access_boolean | |
owner | DE-1046 DE-Aug4 DE-859 DE-860 DE-739 DE-91 DE-BY-TUM DE-898 DE-BY-UBR DE-1043 DE-706 DE-858 |
owner_facet | DE-1046 DE-Aug4 DE-859 DE-860 DE-739 DE-91 DE-BY-TUM DE-898 DE-BY-UBR DE-1043 DE-706 DE-858 |
physical | 1 online resource (656 pages) 40 b/w illus |
psigel | ZDB-23-DGG ZDB-23-DMA ZDB-23-DMA20 ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FHA_PDA_DGG ZDB-23-DMA FHR_ZDB-23-DMA20 ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DMA TUM_Paketkauf ZDB-23-DGG UPA_PDA_DGG ZDB-23-DGG FCO_PDA_DGG |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Princeton University Press |
record_format | marc |
series2 | Princeton Series in Applied Mathematics |
spelling | Juditsky, Anatoli 1962- Verfasser (DE-588)171869257 aut Statistical Inference via Convex Optimization Anatoli Juditsky, Arkadi Nemirovski Princeton, NJ Princeton University Press [2020] © 2020 1 online resource (656 pages) 40 b/w illus txt rdacontent c rdamedia cr rdacarrier Princeton Series in Applied Mathematics 69 Description based on online resource; title from PDF title page (publisher's Web site, viewed 24. Apr 2020) This authoritative book draws on the latest research to explore the interplay of high-dimensional statistics with optimization. Through an accessible analysis of fundamental problems of hypothesis testing and signal recovery, Anatoli Juditsky and Arkadi Nemirovski show how convex optimization theory can be used to devise and analyze near-optimal statistical inferences.Statistical Inference via Convex Optimization is an essential resource for optimization specialists who are new to statistics and its applications, and for data scientists who want to improve their optimization methods. Juditsky and Nemirovski provide the first systematic treatment of the statistical techniques that have arisen from advances in the theory of optimization. They focus on four well-known statistical problems—sparse recovery, hypothesis testing, and recovery from indirect observations of both signals and functions of signals—demonstrating how they can be solved more efficiently as convex optimization problems. The emphasis throughout is on achieving the best possible statistical performance. The construction of inference routines and the quantification of their statistical performance are given by efficient computation rather than by analytical derivation typical of more conventional statistical approaches. In addition to being computation-friendly, the methods described in this book enable practitioners to handle numerous situations too difficult for closed analytical form analysis, such as composite hypothesis testing and signal recovery in inverse problems.Statistical Inference via Convex Optimization features exercises with solutions along with extensive appendixes, making it ideal for use as a graduate text In English All of Nonparametric Statistics Asymptotic Methods in Statistical Decision Theory Dantzig selector Gaussian observations Has'minskii Hellinger distance Ibragimov Introduction to Nonparametric Estimation Lagrange duality Le Cam N-convex function Statistical Estimation Tsybakov Wasserman bisection algorithm conic programming convex sets duality ell-1-norm minimization estimating functions lasso selector minimization saddle points signal plus noise signal-to-noise unobserved signal variable selection MATHEMATICS / Optimization bisacsh Nemirovskij, Arkadij S. 1947- (DE-588)12209395X aut Erscheint auch als Druck-Ausgabe 978-0-691-19729-6 https://doi.org/10.1515/9780691200316 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Juditsky, Anatoli 1962- Nemirovskij, Arkadij S. 1947- Statistical Inference via Convex Optimization All of Nonparametric Statistics Asymptotic Methods in Statistical Decision Theory Dantzig selector Gaussian observations Has'minskii Hellinger distance Ibragimov Introduction to Nonparametric Estimation Lagrange duality Le Cam N-convex function Statistical Estimation Tsybakov Wasserman bisection algorithm conic programming convex sets duality ell-1-norm minimization estimating functions lasso selector minimization saddle points signal plus noise signal-to-noise unobserved signal variable selection MATHEMATICS / Optimization bisacsh |
title | Statistical Inference via Convex Optimization |
title_auth | Statistical Inference via Convex Optimization |
title_exact_search | Statistical Inference via Convex Optimization |
title_exact_search_txtP | Statistical Inference via Convex Optimization |
title_full | Statistical Inference via Convex Optimization Anatoli Juditsky, Arkadi Nemirovski |
title_fullStr | Statistical Inference via Convex Optimization Anatoli Juditsky, Arkadi Nemirovski |
title_full_unstemmed | Statistical Inference via Convex Optimization Anatoli Juditsky, Arkadi Nemirovski |
title_short | Statistical Inference via Convex Optimization |
title_sort | statistical inference via convex optimization |
topic | All of Nonparametric Statistics Asymptotic Methods in Statistical Decision Theory Dantzig selector Gaussian observations Has'minskii Hellinger distance Ibragimov Introduction to Nonparametric Estimation Lagrange duality Le Cam N-convex function Statistical Estimation Tsybakov Wasserman bisection algorithm conic programming convex sets duality ell-1-norm minimization estimating functions lasso selector minimization saddle points signal plus noise signal-to-noise unobserved signal variable selection MATHEMATICS / Optimization bisacsh |
topic_facet | All of Nonparametric Statistics Asymptotic Methods in Statistical Decision Theory Dantzig selector Gaussian observations Has'minskii Hellinger distance Ibragimov Introduction to Nonparametric Estimation Lagrange duality Le Cam N-convex function Statistical Estimation Tsybakov Wasserman bisection algorithm conic programming convex sets duality ell-1-norm minimization estimating functions lasso selector minimization saddle points signal plus noise signal-to-noise unobserved signal variable selection MATHEMATICS / Optimization |
url | https://doi.org/10.1515/9780691200316 |
work_keys_str_mv | AT juditskyanatoli statisticalinferenceviaconvexoptimization AT nemirovskijarkadijs statisticalinferenceviaconvexoptimization |