Optical and Thermo-Hydraulic Simulation and Optimization of Solar Tower Plant Receivers:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Buch |
Sprache: | English |
Veröffentlicht: |
Stuttgart
Fraunhofer Verlag
[2020]
|
Schriftenreihe: | Solar Energie- und Systemforschung / Solar Energy and Systems Research
|
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Beschreibung: | xix, 138 Seiten Illustrationen 21 cm x 14.8 cm |
ISBN: | 9783839615676 |
Internformat
MARC
LEADER | 00000nam a22000008c 4500 | ||
---|---|---|---|
001 | BV046713042 | ||
003 | DE-604 | ||
005 | 20200603 | ||
007 | t | ||
008 | 200508s2020 gw a||| m||| 00||| eng d | ||
015 | |a 20,N19 |2 dnb | ||
016 | 7 | |a 1209372002 |2 DE-101 | |
020 | |a 9783839615676 |c : EUR 63.00 (DE), EUR 64.80 (AT), CHF 97.10 (freier Preis) |9 978-3-8396-1567-6 | ||
024 | 3 | |a 9783839615676 | |
028 | 5 | 2 | |a Bestellnummer: fhg-ise_111 |
035 | |a (OCoLC)1164621782 | ||
035 | |a (DE-599)DNB1209372002 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BW | ||
049 | |a DE-29T | ||
084 | |a 620 |2 sdnb | ||
100 | 1 | |a Schöttl, Peter |d 1987- |e Verfasser |0 (DE-588)1209978172 |4 aut | |
245 | 1 | 0 | |a Optical and Thermo-Hydraulic Simulation and Optimization of Solar Tower Plant Receivers |c Peter Schöttl. Fraunhofer Institute for Solar Energy Systems ISE |
264 | 1 | |a Stuttgart |b Fraunhofer Verlag |c [2020] | |
300 | |a xix, 138 Seiten |b Illustrationen |c 21 cm x 14.8 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Solar Energie- und Systemforschung / Solar Energy and Systems Research | |
502 | |b Dissertation |c ETH, Zürich |d 2019 | ||
650 | 0 | 7 | |a Energieabsorber |0 (DE-588)4152211-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Thermodynamik |0 (DE-588)4059827-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Sonnenkollektor |0 (DE-588)4058500-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Sonnenturmkraftwerk |0 (DE-588)4140496-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wärmeübertragung |0 (DE-588)4064211-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Sonnenstrahlung |0 (DE-588)4139254-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wärmestrahlung |0 (DE-588)4188872-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Evolutionsstrategie |0 (DE-588)4015930-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Computersimulation |0 (DE-588)4148259-1 |2 gnd |9 rswk-swf |
653 | |a Alternative und erneuerbare Energiequellen und Technologien | ||
653 | |a Computergestützte Modellbildung und Simulation | ||
653 | |a Optimierung | ||
653 | |a Thermodynamik für Ingenieure | ||
653 | |a Wissenschaft, Forschung, Industrie | ||
653 | |a Wärmetransportprozesse | ||
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Sonnenturmkraftwerk |0 (DE-588)4140496-8 |D s |
689 | 0 | 1 | |a Energieabsorber |0 (DE-588)4152211-4 |D s |
689 | 0 | 2 | |a Wärmeübertragung |0 (DE-588)4064211-2 |D s |
689 | 0 | 3 | |a Sonnenkollektor |0 (DE-588)4058500-1 |D s |
689 | 0 | 4 | |a Wärmestrahlung |0 (DE-588)4188872-8 |D s |
689 | 0 | 5 | |a Sonnenstrahlung |0 (DE-588)4139254-1 |D s |
689 | 0 | 6 | |a Thermodynamik |0 (DE-588)4059827-5 |D s |
689 | 0 | 7 | |a Evolutionsstrategie |0 (DE-588)4015930-9 |D s |
689 | 0 | 8 | |a Computersimulation |0 (DE-588)4148259-1 |D s |
689 | 0 | |5 DE-604 | |
710 | 2 | |a Fraunhofer IRB-Verlag |0 (DE-588)4786605-6 |4 pbl | |
856 | 4 | 2 | |m X:MVB |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=93f9c4b4060540bba91b5414032ce9e2&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032123412&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-032123412 |
Datensatz im Suchindex
_version_ | 1804181447864483840 |
---|---|
adam_text | TABLE
OF
CONTENTS
LIST
OF
FIGURES
X
LIST
OF
TABLES
XII
NOMENCLATURE
XIII
1
INTRODUCTION
1
1.1
MOTIVATION
..................................................................................................
3
1.2
RESEARCH
QUESTION
AND
OBJECTIVES
.........................................................
4
1.3
STRUCTURE
OF
THIS
STUDY
............................................................................
5
2
FUNDAMENTALS
AND
LITERATURE
REVIEW
7
2.1
SOLAR
RADIATION
........................................................................................
7
2.1.1
SOLAR
RESSOURCE
............................................................................
7
2.1.2
SUN-SHAPE
DISTRIBUTION
................................................................
9
2.1.3
SUN
POSITION
AND
COORDINATE
SYSTEM
...........................................
9
2.2
CENTRAL
RECEIVER
SOLAR
TOWER
SYSTEMS
.......................................................
9
2.2.1
HEAT
TRANSFER
FLUIDS
..........................................................................
10
2.2.2
HELIOSTAT
FIELD
...................................................................................
11
2.2.3
TOWER
...............................................................................................
14
2.2.4
STORAGE
AND
HEAT
TRANSFER
FLUID
PUMP
............................................
14
2.2.5
POWER
BLOCK
......................................................................................
15
2.2.6
ENERGY
CONVERSION
CHAIN
.................................................................
15
2.3
SOLAR
TOWER
RECEIVERS
...................................................................................
16*
2.3.1
TYPOLOGY
OF
COMMERCIAL
RECEIVERS
..................................................
17
2.3.2
OPTICAL,
THERMAL,
HYDRAULIC
AND
INACTIVITY
LOSSES
.........................
20
2.3.3
SPECIFICS
REGARDING
THE
CASE
STUDY
.................................................
21
2.4
LITERATURE
REVIEW
-
STATE
OF
THE
ART
...........................................................
21
2.5
SUMMARY
.....................................................................................................
29
3
DETAILED
RECEIVER
MODELING
30
3.1
LEVEL
OF
DETAIL
...............................................................................................
30
3.2
MODELING
OF
SOLAR
RADIATION
..........................................................................
32
3.2.1
RAY
TRACING
......................................................................................
32
VII
3.2.2
AIMING
STRATEGY
................................................................................
34
3.2.3
DEFOCUSING
STRATEGY
................................................................
37
3.3
THERMAL
RECEIVER
MODELING
..........................................................................
39
3.3.1
THERMAL
RADIATION
..........................................................................
40
3.3.2
CONVECTIVE
HEAT
LOSSES
WITH
WIND
INFLUENCE
..................................
42
3.3.3
CONDUCTION
AND
CONVECTION
IN
THE
TUBE
MODEL
............................
47
3.3.4
PASSIVE
SURFACE
ENERGY
BALANCE
........................................................
49
3.3.5
THERMAL
LOSSES
................................................................................
50
3.4
HYDRAULIC
RECEIVER
MODELING
.......................................................................
50
3.4.1
PLUG-FLOW
MODEL
................................................................................
50
3.4.2
PRESSURE
DROP
...................................................................................
51
3.4.3
MINIMUM
MASS
FLOW
RATE
.................................................................
52
3.5
COMPARISON
OF
SIMULATIONS
AND
MEASUREMENTS
FROM
THE
SOLAR
TWO
PROJECT
............................................................................................................
53
3.5.1
DESCRIPTION
OF
SOLAR
TWO
DATA
........................................................
54
3.5.2
MODELING
OF
THE
SOLAR
TWO
SYSTEM
..................................................
55
3.5.3
SOLAR
TWO
COMPARISON
RESULTS
AND
DISCUSSION
.................................
56
3.6
SUMMARY
.....................
58
4
TRANSIENT
SYSTEM
SIMULATION
60
4.1
TRANSIENT
FLUX
ASSESSMENT
.............................................................................
60
4.1.1
SKY
DISCRETIZATION
AND
TRIANGULATION
...............................................
61
4.1.2
EXCURSUS:
SPHERICAL
VS
3-DIMENSIONAL
CARTESIAN
COORDINATES
AND
SPHERICAL
BARYCENTRIC
INTERPOLATION
........................................
64
4.1.3
SKY
NODE
SELECTION
..........................................................................
65
4.1.4
SKY
NODE
INTERPOLATION
....................................................................
66
4.1.5
FLUX
LEVEL
INTERPOLATION
....................................................................
71
4.1.6
VALIDATION
.........................................................................................
73
4.1.7
LIMITATIONS
AND
METHODOLOGY
PERFORMANCE
..................................
86
4.2
ANNUAL
SIMULATIONS
WITH
RECEIVER
PERFORMANCE
MODEL
BASED
ON
AN
AR
TIFICIAL
NEURAL
NETWORK
...........................................
87
4.2.1
ARTIFICIAL
NEURAL
NETWORK
ARCHITECTURE
...........................................
87
4.2.2
TRAINING
WITH
CHARACTERISTIC
DAYS
..................................................
89
4.2.3
INTEGRATION
WITH
SYSTEM
SIMULATION
...............................................
89
4.2.4
COMPARISON
WITH
THE
DETAILED
PHYSICAL
MODEL
...............
.
.
.
90
4.3
PLANT
SYSTEM
MODEL
.......................................
90
4.3.1
COMPONENTS
......................................................
90
4.3.2
CONTROL
APPROACH
.............................................................................
92
4.4
EXAMPLE:
TWO
DAYS
OF
TRANSIENT
MOLTEN
SALT
CAVITY
SIMULATION
............
93
4.5
SUMMARY
..........................................
95
5
RECEIVER
OPTIMIZATION
97
5.1
OBJECTIVE
FUNCTION
AND
FIGURE
OF
MERIT
...........................
97
5.2
OPTIMIZATION
ALGORITHM
................................................................................
99
5.2.1
ALGORITHM
CATEGORY
..........................................................................
99
VIII
5.2.2
EVOLUTIONARY
ALGORITHM
-
EVOLUTION
STRATEGIES
..............................
100
5.3
PARALLELIZATION
AND
COMPUTATIONAL
PERFORMANCE
.......................................
102
5.4
SUMMARY
....................................................................................................
103
6
CASE
STUDY:
MOLTEN
SALT
CAVITY
RECEIVER
104
6.1
OPTIMIZATION
SCENARIO
..............................................................................
104
6.2
REFERENCE
DESIGN
AND
BOUNDARY
CONDITIONS
.............................................
105
6.3
OPTIMIZATION
RESULTS
.................................................................................
105
6.4
SENSITIVITY
ANALYSIS
FOR
THE
OPTIMIZED
RECEIVER
CONFIGURATION
...............
110
6.5
SUMMARY
....................................................................................................
112
7
APPLICABILITY
TO
OTHER
TECHNOLOGICAL
CONCEPTS
114
7.1
APPLICABILITY
TO
OTHER
RECEIVER
CONCEPTS
...................................................
114
7.2
INTEGRATION
OF
A
SECONDARY
CONCENTRATOR
...................................................
115
7.3
INTEGRATION
OF
HELIOSTAT
FIELD
AND
TOWER
...................................................
117
7.4
SUMMARY
....................................................................................................
119
8
CONCLUSION
120
8.1
OUTLOOK
.......................................................................................................
122
BIBLIOGRAPHY
124
IX
|
adam_txt |
TABLE
OF
CONTENTS
LIST
OF
FIGURES
X
LIST
OF
TABLES
XII
NOMENCLATURE
XIII
1
INTRODUCTION
1
1.1
MOTIVATION
.
3
1.2
RESEARCH
QUESTION
AND
OBJECTIVES
.
4
1.3
STRUCTURE
OF
THIS
STUDY
.
5
2
FUNDAMENTALS
AND
LITERATURE
REVIEW
7
2.1
SOLAR
RADIATION
.
7
2.1.1
SOLAR
RESSOURCE
.
7
2.1.2
SUN-SHAPE
DISTRIBUTION
.
9
2.1.3
SUN
POSITION
AND
COORDINATE
SYSTEM
.
9
2.2
CENTRAL
RECEIVER
SOLAR
TOWER
SYSTEMS
.
9
2.2.1
HEAT
TRANSFER
FLUIDS
.
10
2.2.2
HELIOSTAT
FIELD
.
11
2.2.3
TOWER
.
14
2.2.4
STORAGE
AND
HEAT
TRANSFER
FLUID
PUMP
.
14
2.2.5
POWER
BLOCK
.
15
2.2.6
ENERGY
CONVERSION
CHAIN
.
15
2.3
SOLAR
TOWER
RECEIVERS
.
16*
2.3.1
TYPOLOGY
OF
COMMERCIAL
RECEIVERS
.
17
2.3.2
OPTICAL,
THERMAL,
HYDRAULIC
AND
INACTIVITY
LOSSES
.
20
2.3.3
SPECIFICS
REGARDING
THE
CASE
STUDY
.
21
2.4
LITERATURE
REVIEW
-
STATE
OF
THE
ART
.
21
2.5
SUMMARY
.
29
3
DETAILED
RECEIVER
MODELING
30
3.1
LEVEL
OF
DETAIL
.
30
3.2
MODELING
OF
SOLAR
RADIATION
.
32
3.2.1
RAY
TRACING
.
32
VII
3.2.2
AIMING
STRATEGY
.
34
3.2.3
DEFOCUSING
STRATEGY
.
37
3.3
THERMAL
RECEIVER
MODELING
.
39
3.3.1
THERMAL
RADIATION
.
40
3.3.2
CONVECTIVE
HEAT
LOSSES
WITH
WIND
INFLUENCE
.
42
3.3.3
CONDUCTION
AND
CONVECTION
IN
THE
TUBE
MODEL
.
47
3.3.4
PASSIVE
SURFACE
ENERGY
BALANCE
.
49
3.3.5
THERMAL
LOSSES
.
50
3.4
HYDRAULIC
RECEIVER
MODELING
.
50
3.4.1
PLUG-FLOW
MODEL
.
50
3.4.2
PRESSURE
DROP
.
51
3.4.3
MINIMUM
MASS
FLOW
RATE
.
52
3.5
COMPARISON
OF
SIMULATIONS
AND
MEASUREMENTS
FROM
THE
SOLAR
TWO
PROJECT
.
53
3.5.1
DESCRIPTION
OF
SOLAR
TWO
DATA
.
54
3.5.2
MODELING
OF
THE
SOLAR
TWO
SYSTEM
.
55
3.5.3
SOLAR
TWO
COMPARISON
RESULTS
AND
DISCUSSION
.
56
3.6
SUMMARY
.
58
4
TRANSIENT
SYSTEM
SIMULATION
60
4.1
TRANSIENT
FLUX
ASSESSMENT
.
60
4.1.1
SKY
DISCRETIZATION
AND
TRIANGULATION
.
61
4.1.2
EXCURSUS:
SPHERICAL
VS
3-DIMENSIONAL
CARTESIAN
COORDINATES
AND
SPHERICAL
BARYCENTRIC
INTERPOLATION
.
64
4.1.3
SKY
NODE
SELECTION
.
65
4.1.4
SKY
NODE
INTERPOLATION
.
66
4.1.5
FLUX
LEVEL
INTERPOLATION
.
71
4.1.6
VALIDATION
.
73
4.1.7
LIMITATIONS
AND
METHODOLOGY
PERFORMANCE
.
86
4.2
ANNUAL
SIMULATIONS
WITH
RECEIVER
PERFORMANCE
MODEL
BASED
ON
AN
AR
TIFICIAL
NEURAL
NETWORK
.
87
4.2.1
ARTIFICIAL
NEURAL
NETWORK
ARCHITECTURE
.
87
4.2.2
TRAINING
WITH
CHARACTERISTIC
DAYS
.
89
4.2.3
INTEGRATION
WITH
SYSTEM
SIMULATION
.
89
4.2.4
COMPARISON
WITH
THE
DETAILED
PHYSICAL
MODEL
.
.
.
.
90
4.3
PLANT
SYSTEM
MODEL
.
90
4.3.1
COMPONENTS
.
90
4.3.2
CONTROL
APPROACH
.
92
4.4
EXAMPLE:
TWO
DAYS
OF
TRANSIENT
MOLTEN
SALT
CAVITY
SIMULATION
.
93
4.5
SUMMARY
.
95
5
RECEIVER
OPTIMIZATION
97
5.1
OBJECTIVE
FUNCTION
AND
FIGURE
OF
MERIT
.
97
5.2
OPTIMIZATION
ALGORITHM
.
99
5.2.1
ALGORITHM
CATEGORY
.
99
VIII
5.2.2
EVOLUTIONARY
ALGORITHM
-
EVOLUTION
STRATEGIES
.
100
5.3
PARALLELIZATION
AND
COMPUTATIONAL
PERFORMANCE
.
102
5.4
SUMMARY
.
103
6
CASE
STUDY:
MOLTEN
SALT
CAVITY
RECEIVER
104
6.1
OPTIMIZATION
SCENARIO
.
104
6.2
REFERENCE
DESIGN
AND
BOUNDARY
CONDITIONS
.
105
6.3
OPTIMIZATION
RESULTS
.
105
6.4
SENSITIVITY
ANALYSIS
FOR
THE
OPTIMIZED
RECEIVER
CONFIGURATION
.
110
6.5
SUMMARY
.
112
7
APPLICABILITY
TO
OTHER
TECHNOLOGICAL
CONCEPTS
114
7.1
APPLICABILITY
TO
OTHER
RECEIVER
CONCEPTS
.
114
7.2
INTEGRATION
OF
A
SECONDARY
CONCENTRATOR
.
115
7.3
INTEGRATION
OF
HELIOSTAT
FIELD
AND
TOWER
.
117
7.4
SUMMARY
.
119
8
CONCLUSION
120
8.1
OUTLOOK
.
122
BIBLIOGRAPHY
124
IX |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Schöttl, Peter 1987- |
author_GND | (DE-588)1209978172 |
author_facet | Schöttl, Peter 1987- |
author_role | aut |
author_sort | Schöttl, Peter 1987- |
author_variant | p s ps |
building | Verbundindex |
bvnumber | BV046713042 |
ctrlnum | (OCoLC)1164621782 (DE-599)DNB1209372002 |
discipline | Maschinenbau / Maschinenwesen |
discipline_str_mv | Maschinenbau / Maschinenwesen |
format | Thesis Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03211nam a22006978c 4500</leader><controlfield tag="001">BV046713042</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200603 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">200508s2020 gw a||| m||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">20,N19</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1209372002</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783839615676</subfield><subfield code="c">: EUR 63.00 (DE), EUR 64.80 (AT), CHF 97.10 (freier Preis)</subfield><subfield code="9">978-3-8396-1567-6</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783839615676</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">Bestellnummer: fhg-ise_111</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1164621782</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1209372002</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">620</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schöttl, Peter</subfield><subfield code="d">1987-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1209978172</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optical and Thermo-Hydraulic Simulation and Optimization of Solar Tower Plant Receivers</subfield><subfield code="c">Peter Schöttl. Fraunhofer Institute for Solar Energy Systems ISE</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Stuttgart</subfield><subfield code="b">Fraunhofer Verlag</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xix, 138 Seiten</subfield><subfield code="b">Illustrationen</subfield><subfield code="c">21 cm x 14.8 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Solar Energie- und Systemforschung / Solar Energy and Systems Research</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">ETH, Zürich</subfield><subfield code="d">2019</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Energieabsorber</subfield><subfield code="0">(DE-588)4152211-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Thermodynamik</subfield><subfield code="0">(DE-588)4059827-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sonnenkollektor</subfield><subfield code="0">(DE-588)4058500-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sonnenturmkraftwerk</subfield><subfield code="0">(DE-588)4140496-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wärmeübertragung</subfield><subfield code="0">(DE-588)4064211-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sonnenstrahlung</subfield><subfield code="0">(DE-588)4139254-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wärmestrahlung</subfield><subfield code="0">(DE-588)4188872-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Evolutionsstrategie</subfield><subfield code="0">(DE-588)4015930-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Computersimulation</subfield><subfield code="0">(DE-588)4148259-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Alternative und erneuerbare Energiequellen und Technologien</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Computergestützte Modellbildung und Simulation</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Optimierung</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Thermodynamik für Ingenieure</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Wissenschaft, Forschung, Industrie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Wärmetransportprozesse</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Sonnenturmkraftwerk</subfield><subfield code="0">(DE-588)4140496-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Energieabsorber</subfield><subfield code="0">(DE-588)4152211-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Wärmeübertragung</subfield><subfield code="0">(DE-588)4064211-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Sonnenkollektor</subfield><subfield code="0">(DE-588)4058500-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Wärmestrahlung</subfield><subfield code="0">(DE-588)4188872-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="5"><subfield code="a">Sonnenstrahlung</subfield><subfield code="0">(DE-588)4139254-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="6"><subfield code="a">Thermodynamik</subfield><subfield code="0">(DE-588)4059827-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="7"><subfield code="a">Evolutionsstrategie</subfield><subfield code="0">(DE-588)4015930-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="8"><subfield code="a">Computersimulation</subfield><subfield code="0">(DE-588)4148259-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Fraunhofer IRB-Verlag</subfield><subfield code="0">(DE-588)4786605-6</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=93f9c4b4060540bba91b5414032ce9e2&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032123412&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032123412</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV046713042 |
illustrated | Illustrated |
index_date | 2024-07-03T14:31:25Z |
indexdate | 2024-07-10T08:51:48Z |
institution | BVB |
institution_GND | (DE-588)4786605-6 |
isbn | 9783839615676 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032123412 |
oclc_num | 1164621782 |
open_access_boolean | |
owner | DE-29T |
owner_facet | DE-29T |
physical | xix, 138 Seiten Illustrationen 21 cm x 14.8 cm |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Fraunhofer Verlag |
record_format | marc |
series2 | Solar Energie- und Systemforschung / Solar Energy and Systems Research |
spelling | Schöttl, Peter 1987- Verfasser (DE-588)1209978172 aut Optical and Thermo-Hydraulic Simulation and Optimization of Solar Tower Plant Receivers Peter Schöttl. Fraunhofer Institute for Solar Energy Systems ISE Stuttgart Fraunhofer Verlag [2020] xix, 138 Seiten Illustrationen 21 cm x 14.8 cm txt rdacontent n rdamedia nc rdacarrier Solar Energie- und Systemforschung / Solar Energy and Systems Research Dissertation ETH, Zürich 2019 Energieabsorber (DE-588)4152211-4 gnd rswk-swf Thermodynamik (DE-588)4059827-5 gnd rswk-swf Sonnenkollektor (DE-588)4058500-1 gnd rswk-swf Sonnenturmkraftwerk (DE-588)4140496-8 gnd rswk-swf Wärmeübertragung (DE-588)4064211-2 gnd rswk-swf Sonnenstrahlung (DE-588)4139254-1 gnd rswk-swf Wärmestrahlung (DE-588)4188872-8 gnd rswk-swf Evolutionsstrategie (DE-588)4015930-9 gnd rswk-swf Computersimulation (DE-588)4148259-1 gnd rswk-swf Alternative und erneuerbare Energiequellen und Technologien Computergestützte Modellbildung und Simulation Optimierung Thermodynamik für Ingenieure Wissenschaft, Forschung, Industrie Wärmetransportprozesse (DE-588)4113937-9 Hochschulschrift gnd-content Sonnenturmkraftwerk (DE-588)4140496-8 s Energieabsorber (DE-588)4152211-4 s Wärmeübertragung (DE-588)4064211-2 s Sonnenkollektor (DE-588)4058500-1 s Wärmestrahlung (DE-588)4188872-8 s Sonnenstrahlung (DE-588)4139254-1 s Thermodynamik (DE-588)4059827-5 s Evolutionsstrategie (DE-588)4015930-9 s Computersimulation (DE-588)4148259-1 s DE-604 Fraunhofer IRB-Verlag (DE-588)4786605-6 pbl X:MVB text/html http://deposit.dnb.de/cgi-bin/dokserv?id=93f9c4b4060540bba91b5414032ce9e2&prov=M&dok_var=1&dok_ext=htm Inhaltstext DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032123412&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Schöttl, Peter 1987- Optical and Thermo-Hydraulic Simulation and Optimization of Solar Tower Plant Receivers Energieabsorber (DE-588)4152211-4 gnd Thermodynamik (DE-588)4059827-5 gnd Sonnenkollektor (DE-588)4058500-1 gnd Sonnenturmkraftwerk (DE-588)4140496-8 gnd Wärmeübertragung (DE-588)4064211-2 gnd Sonnenstrahlung (DE-588)4139254-1 gnd Wärmestrahlung (DE-588)4188872-8 gnd Evolutionsstrategie (DE-588)4015930-9 gnd Computersimulation (DE-588)4148259-1 gnd |
subject_GND | (DE-588)4152211-4 (DE-588)4059827-5 (DE-588)4058500-1 (DE-588)4140496-8 (DE-588)4064211-2 (DE-588)4139254-1 (DE-588)4188872-8 (DE-588)4015930-9 (DE-588)4148259-1 (DE-588)4113937-9 |
title | Optical and Thermo-Hydraulic Simulation and Optimization of Solar Tower Plant Receivers |
title_auth | Optical and Thermo-Hydraulic Simulation and Optimization of Solar Tower Plant Receivers |
title_exact_search | Optical and Thermo-Hydraulic Simulation and Optimization of Solar Tower Plant Receivers |
title_exact_search_txtP | Optical and Thermo-Hydraulic Simulation and Optimization of Solar Tower Plant Receivers |
title_full | Optical and Thermo-Hydraulic Simulation and Optimization of Solar Tower Plant Receivers Peter Schöttl. Fraunhofer Institute for Solar Energy Systems ISE |
title_fullStr | Optical and Thermo-Hydraulic Simulation and Optimization of Solar Tower Plant Receivers Peter Schöttl. Fraunhofer Institute for Solar Energy Systems ISE |
title_full_unstemmed | Optical and Thermo-Hydraulic Simulation and Optimization of Solar Tower Plant Receivers Peter Schöttl. Fraunhofer Institute for Solar Energy Systems ISE |
title_short | Optical and Thermo-Hydraulic Simulation and Optimization of Solar Tower Plant Receivers |
title_sort | optical and thermo hydraulic simulation and optimization of solar tower plant receivers |
topic | Energieabsorber (DE-588)4152211-4 gnd Thermodynamik (DE-588)4059827-5 gnd Sonnenkollektor (DE-588)4058500-1 gnd Sonnenturmkraftwerk (DE-588)4140496-8 gnd Wärmeübertragung (DE-588)4064211-2 gnd Sonnenstrahlung (DE-588)4139254-1 gnd Wärmestrahlung (DE-588)4188872-8 gnd Evolutionsstrategie (DE-588)4015930-9 gnd Computersimulation (DE-588)4148259-1 gnd |
topic_facet | Energieabsorber Thermodynamik Sonnenkollektor Sonnenturmkraftwerk Wärmeübertragung Sonnenstrahlung Wärmestrahlung Evolutionsstrategie Computersimulation Hochschulschrift |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=93f9c4b4060540bba91b5414032ce9e2&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032123412&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT schottlpeter opticalandthermohydraulicsimulationandoptimizationofsolartowerplantreceivers AT fraunhoferirbverlag opticalandthermohydraulicsimulationandoptimizationofsolartowerplantreceivers |