Applied unsupervised learning with R: uncover hidden relationships and patterns with k-means clustering, hierarchical clustering, and PCA
Starting with the basics, Applied Unsupervised Learning with R explains clustering methods, distribution analysis, data encoders, and all features of R that enable you to understand your data better and get answers to all your business questions
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Birmingham ; Mumbai
Packt
March 2019
|
Schlagworte: | |
Online-Zugang: | UBY01 UER01 |
Zusammenfassung: | Starting with the basics, Applied Unsupervised Learning with R explains clustering methods, distribution analysis, data encoders, and all features of R that enable you to understand your data better and get answers to all your business questions Intro -- Preface -- Introduction to Clustering Methods -- Introduction -- Introduction to Clustering -- Uses of Clustering -- Introduction to the Iris Dataset -- Exercise 1: Exploring the Iris Dataset -- Types of Clustering -- Introduction to k-means Clustering -- Euclidean Distance -- Manhattan Distance -- Cosine Distance -- The Hamming Distance -- k-means Clustering Algorithm -- Steps to Implement k-means Clustering -- Exercise 2: Implementing k-means Clustering on the Iris Dataset -- Activity 1: k-means Clustering with Three Clusters -- Introduction to k-means Clustering with Built-In Functions -- k-means Clustering with Three Clusters -- Exercise 3: k-means Clustering with R Libraries -- Introduction to Market Segmentation -- Exercise 4: Exploring the Wholesale Customer Dataset -- Activity 2: Customer Segmentation with k-means -- Introduction to k-medoids Clustering -- The k-medoids Clustering Algorithm -- k-medoids Clustering Code -- Exercise 5: Implementing k-medoid Clustering -- k-means Clustering versus k-medoids Clustering -- Activity 3: Performing Customer Segmentation with k-medoids Clustering -- Deciding the Optimal Number of Clusters -- Types of Clustering Metrics -- Silhouette Score -- Exercise 6: Calculating the Silhouette Score -- Exercise 7: Identifying the Optimum Number of Clusters -- WSS/Elbow Method -- Exercise 8: Using WSS to Determine the Number of Clusters -- The Gap Statistic -- Exercise 9: Calculating the Ideal Number of Clusters with the Gap Statistic -- Activity 4: Finding the Ideal Number of Market Segments -- Summary -- Advanced Clustering Methods -- Introduction -- Introduction to k-modes Clustering -- Steps for k-Modes Clustering -- Exercise 10: Implementing k-modes Clustering -- Activity 5: Implementing k-modes Clustering on the Mushroom Dataset -- Introduction to Density-Based Clustering (DBSCAN) |
Beschreibung: | 1 Online-Ressource (vi, 297 Seiten) Illustrationen, Diagramme |
ISBN: | 9781789951462 |
Internformat
MARC
LEADER | 00000nmm a22000001c 4500 | ||
---|---|---|---|
001 | BV046707821 | ||
003 | DE-604 | ||
005 | 20221214 | ||
007 | cr|uuu---uuuuu | ||
008 | 200506s2019 |||| o||u| ||||||eng d | ||
020 | |a 9781789951462 |c Online |9 9781789951462 | ||
035 | |a (ZDB-30-PQE)EBC5742601 | ||
035 | |a (OCoLC)1153996716 | ||
035 | |a (DE-599)BVBBV046707821 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-706 |a DE-29 | ||
100 | 1 | |a Malik, Alok |e Verfasser |4 aut | |
245 | 1 | 0 | |a Applied unsupervised learning with R |b uncover hidden relationships and patterns with k-means clustering, hierarchical clustering, and PCA |c Alok Malik and Bradford Tuckfield |
264 | 1 | |a Birmingham ; Mumbai |b Packt |c March 2019 | |
300 | |a 1 Online-Ressource (vi, 297 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | 3 | |a Starting with the basics, Applied Unsupervised Learning with R explains clustering methods, distribution analysis, data encoders, and all features of R that enable you to understand your data better and get answers to all your business questions | |
520 | 3 | |a Intro -- Preface -- Introduction to Clustering Methods -- Introduction -- Introduction to Clustering -- Uses of Clustering -- Introduction to the Iris Dataset -- Exercise 1: Exploring the Iris Dataset -- Types of Clustering -- Introduction to k-means Clustering -- Euclidean Distance -- Manhattan Distance -- Cosine Distance -- The Hamming Distance -- k-means Clustering Algorithm -- Steps to Implement k-means Clustering -- Exercise 2: Implementing k-means Clustering on the Iris Dataset -- Activity 1: k-means Clustering with Three Clusters -- Introduction to k-means Clustering with Built-In Functions -- k-means Clustering with Three Clusters -- Exercise 3: k-means Clustering with R Libraries -- Introduction to Market Segmentation -- Exercise 4: Exploring the Wholesale Customer Dataset -- Activity 2: Customer Segmentation with k-means -- Introduction to k-medoids Clustering -- The k-medoids Clustering Algorithm -- k-medoids Clustering Code -- Exercise 5: Implementing k-medoid Clustering -- k-means Clustering versus k-medoids Clustering -- Activity 3: Performing Customer Segmentation with k-medoids Clustering -- Deciding the Optimal Number of Clusters -- Types of Clustering Metrics -- Silhouette Score -- Exercise 6: Calculating the Silhouette Score -- Exercise 7: Identifying the Optimum Number of Clusters -- WSS/Elbow Method -- Exercise 8: Using WSS to Determine the Number of Clusters -- The Gap Statistic -- Exercise 9: Calculating the Ideal Number of Clusters with the Gap Statistic -- Activity 4: Finding the Ideal Number of Market Segments -- Summary -- Advanced Clustering Methods -- Introduction -- Introduction to k-modes Clustering -- Steps for k-Modes Clustering -- Exercise 10: Implementing k-modes Clustering -- Activity 5: Implementing k-modes Clustering on the Mushroom Dataset -- Introduction to Density-Based Clustering (DBSCAN) | |
650 | 0 | 7 | |a R |g Programm |0 (DE-588)4705956-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Datenanalyse |0 (DE-588)4123037-1 |2 gnd |9 rswk-swf |
653 | 0 | |a Data mining-Computer programs | |
653 | 0 | |a R (Computer program language) | |
653 | 0 | |a Electronic books | |
689 | 0 | 0 | |a Datenanalyse |0 (DE-588)4123037-1 |D s |
689 | 0 | 1 | |a R |g Programm |0 (DE-588)4705956-4 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Tuckfield, Bradford |4 ctb | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-78995-146-2 |
912 | |a ZDB-30-PQE |a ZDB-4-NLEBK |a ZDB-5-WPSE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032118268 | ||
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2092865 |l UBY01 |p ZDB-4-NLEBK |q UBY01_DDA20 |x Aggregator |3 Volltext | |
966 | e | |u https://ebookcentral.proquest.com/lib/erlangen/detail.action?docID=5742601 |l UER01 |p ZDB-30-PQE |q UER_PDA_PQE_Kauf_2023 |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181440000163841 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Malik, Alok |
author2 | Tuckfield, Bradford |
author2_role | ctb |
author2_variant | b t bt |
author_facet | Malik, Alok Tuckfield, Bradford |
author_role | aut |
author_sort | Malik, Alok |
author_variant | a m am |
building | Verbundindex |
bvnumber | BV046707821 |
collection | ZDB-30-PQE ZDB-4-NLEBK ZDB-5-WPSE |
ctrlnum | (ZDB-30-PQE)EBC5742601 (OCoLC)1153996716 (DE-599)BVBBV046707821 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03930nmm a22004451c 4500</leader><controlfield tag="001">BV046707821</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20221214 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200506s2019 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781789951462</subfield><subfield code="c">Online</subfield><subfield code="9">9781789951462</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC5742601</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1153996716</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046707821</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield><subfield code="a">DE-29</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Malik, Alok</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Applied unsupervised learning with R</subfield><subfield code="b">uncover hidden relationships and patterns with k-means clustering, hierarchical clustering, and PCA</subfield><subfield code="c">Alok Malik and Bradford Tuckfield</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham ; Mumbai</subfield><subfield code="b">Packt</subfield><subfield code="c">March 2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (vi, 297 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Starting with the basics, Applied Unsupervised Learning with R explains clustering methods, distribution analysis, data encoders, and all features of R that enable you to understand your data better and get answers to all your business questions</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Intro -- Preface -- Introduction to Clustering Methods -- Introduction -- Introduction to Clustering -- Uses of Clustering -- Introduction to the Iris Dataset -- Exercise 1: Exploring the Iris Dataset -- Types of Clustering -- Introduction to k-means Clustering -- Euclidean Distance -- Manhattan Distance -- Cosine Distance -- The Hamming Distance -- k-means Clustering Algorithm -- Steps to Implement k-means Clustering -- Exercise 2: Implementing k-means Clustering on the Iris Dataset -- Activity 1: k-means Clustering with Three Clusters -- Introduction to k-means Clustering with Built-In Functions -- k-means Clustering with Three Clusters -- Exercise 3: k-means Clustering with R Libraries -- Introduction to Market Segmentation -- Exercise 4: Exploring the Wholesale Customer Dataset -- Activity 2: Customer Segmentation with k-means -- Introduction to k-medoids Clustering -- The k-medoids Clustering Algorithm -- k-medoids Clustering Code -- Exercise 5: Implementing k-medoid Clustering -- k-means Clustering versus k-medoids Clustering -- Activity 3: Performing Customer Segmentation with k-medoids Clustering -- Deciding the Optimal Number of Clusters -- Types of Clustering Metrics -- Silhouette Score -- Exercise 6: Calculating the Silhouette Score -- Exercise 7: Identifying the Optimum Number of Clusters -- WSS/Elbow Method -- Exercise 8: Using WSS to Determine the Number of Clusters -- The Gap Statistic -- Exercise 9: Calculating the Ideal Number of Clusters with the Gap Statistic -- Activity 4: Finding the Ideal Number of Market Segments -- Summary -- Advanced Clustering Methods -- Introduction -- Introduction to k-modes Clustering -- Steps for k-Modes Clustering -- Exercise 10: Implementing k-modes Clustering -- Activity 5: Implementing k-modes Clustering on the Mushroom Dataset -- Introduction to Density-Based Clustering (DBSCAN)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">R</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4705956-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Data mining-Computer programs</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R (Computer program language)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronic books</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">R</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4705956-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tuckfield, Bradford</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-78995-146-2</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield><subfield code="a">ZDB-4-NLEBK</subfield><subfield code="a">ZDB-5-WPSE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032118268</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2092865</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-4-NLEBK</subfield><subfield code="q">UBY01_DDA20</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/erlangen/detail.action?docID=5742601</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">UER_PDA_PQE_Kauf_2023</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046707821 |
illustrated | Not Illustrated |
index_date | 2024-07-03T14:30:22Z |
indexdate | 2024-07-10T08:51:41Z |
institution | BVB |
isbn | 9781789951462 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032118268 |
oclc_num | 1153996716 |
open_access_boolean | |
owner | DE-706 DE-29 |
owner_facet | DE-706 DE-29 |
physical | 1 Online-Ressource (vi, 297 Seiten) Illustrationen, Diagramme |
psigel | ZDB-30-PQE ZDB-4-NLEBK ZDB-5-WPSE ZDB-4-NLEBK UBY01_DDA20 ZDB-30-PQE UER_PDA_PQE_Kauf_2023 |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Packt |
record_format | marc |
spelling | Malik, Alok Verfasser aut Applied unsupervised learning with R uncover hidden relationships and patterns with k-means clustering, hierarchical clustering, and PCA Alok Malik and Bradford Tuckfield Birmingham ; Mumbai Packt March 2019 1 Online-Ressource (vi, 297 Seiten) Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Starting with the basics, Applied Unsupervised Learning with R explains clustering methods, distribution analysis, data encoders, and all features of R that enable you to understand your data better and get answers to all your business questions Intro -- Preface -- Introduction to Clustering Methods -- Introduction -- Introduction to Clustering -- Uses of Clustering -- Introduction to the Iris Dataset -- Exercise 1: Exploring the Iris Dataset -- Types of Clustering -- Introduction to k-means Clustering -- Euclidean Distance -- Manhattan Distance -- Cosine Distance -- The Hamming Distance -- k-means Clustering Algorithm -- Steps to Implement k-means Clustering -- Exercise 2: Implementing k-means Clustering on the Iris Dataset -- Activity 1: k-means Clustering with Three Clusters -- Introduction to k-means Clustering with Built-In Functions -- k-means Clustering with Three Clusters -- Exercise 3: k-means Clustering with R Libraries -- Introduction to Market Segmentation -- Exercise 4: Exploring the Wholesale Customer Dataset -- Activity 2: Customer Segmentation with k-means -- Introduction to k-medoids Clustering -- The k-medoids Clustering Algorithm -- k-medoids Clustering Code -- Exercise 5: Implementing k-medoid Clustering -- k-means Clustering versus k-medoids Clustering -- Activity 3: Performing Customer Segmentation with k-medoids Clustering -- Deciding the Optimal Number of Clusters -- Types of Clustering Metrics -- Silhouette Score -- Exercise 6: Calculating the Silhouette Score -- Exercise 7: Identifying the Optimum Number of Clusters -- WSS/Elbow Method -- Exercise 8: Using WSS to Determine the Number of Clusters -- The Gap Statistic -- Exercise 9: Calculating the Ideal Number of Clusters with the Gap Statistic -- Activity 4: Finding the Ideal Number of Market Segments -- Summary -- Advanced Clustering Methods -- Introduction -- Introduction to k-modes Clustering -- Steps for k-Modes Clustering -- Exercise 10: Implementing k-modes Clustering -- Activity 5: Implementing k-modes Clustering on the Mushroom Dataset -- Introduction to Density-Based Clustering (DBSCAN) R Programm (DE-588)4705956-4 gnd rswk-swf Datenanalyse (DE-588)4123037-1 gnd rswk-swf Data mining-Computer programs R (Computer program language) Electronic books Datenanalyse (DE-588)4123037-1 s R Programm (DE-588)4705956-4 s DE-604 Tuckfield, Bradford ctb Erscheint auch als Druck-Ausgabe 978-1-78995-146-2 |
spellingShingle | Malik, Alok Applied unsupervised learning with R uncover hidden relationships and patterns with k-means clustering, hierarchical clustering, and PCA R Programm (DE-588)4705956-4 gnd Datenanalyse (DE-588)4123037-1 gnd |
subject_GND | (DE-588)4705956-4 (DE-588)4123037-1 |
title | Applied unsupervised learning with R uncover hidden relationships and patterns with k-means clustering, hierarchical clustering, and PCA |
title_auth | Applied unsupervised learning with R uncover hidden relationships and patterns with k-means clustering, hierarchical clustering, and PCA |
title_exact_search | Applied unsupervised learning with R uncover hidden relationships and patterns with k-means clustering, hierarchical clustering, and PCA |
title_exact_search_txtP | Applied unsupervised learning with R uncover hidden relationships and patterns with k-means clustering, hierarchical clustering, and PCA |
title_full | Applied unsupervised learning with R uncover hidden relationships and patterns with k-means clustering, hierarchical clustering, and PCA Alok Malik and Bradford Tuckfield |
title_fullStr | Applied unsupervised learning with R uncover hidden relationships and patterns with k-means clustering, hierarchical clustering, and PCA Alok Malik and Bradford Tuckfield |
title_full_unstemmed | Applied unsupervised learning with R uncover hidden relationships and patterns with k-means clustering, hierarchical clustering, and PCA Alok Malik and Bradford Tuckfield |
title_short | Applied unsupervised learning with R |
title_sort | applied unsupervised learning with r uncover hidden relationships and patterns with k means clustering hierarchical clustering and pca |
title_sub | uncover hidden relationships and patterns with k-means clustering, hierarchical clustering, and PCA |
topic | R Programm (DE-588)4705956-4 gnd Datenanalyse (DE-588)4123037-1 gnd |
topic_facet | R Programm Datenanalyse |
work_keys_str_mv | AT malikalok appliedunsupervisedlearningwithruncoverhiddenrelationshipsandpatternswithkmeansclusteringhierarchicalclusteringandpca AT tuckfieldbradford appliedunsupervisedlearningwithruncoverhiddenrelationshipsandpatternswithkmeansclusteringhierarchicalclusteringandpca |