Applied unsupervised learning with R: uncover hidden relationships and patterns with k-means clustering, hierarchical clustering, and PCA

Starting with the basics, Applied Unsupervised Learning with R explains clustering methods, distribution analysis, data encoders, and all features of R that enable you to understand your data better and get answers to all your business questions

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Malik, Alok (VerfasserIn)
Weitere Verfasser: Tuckfield, Bradford (MitwirkendeR)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Birmingham ; Mumbai Packt March 2019
Schlagworte:
Online-Zugang:UBY01
UER01
Zusammenfassung:Starting with the basics, Applied Unsupervised Learning with R explains clustering methods, distribution analysis, data encoders, and all features of R that enable you to understand your data better and get answers to all your business questions
Intro -- Preface -- Introduction to Clustering Methods -- Introduction -- Introduction to Clustering -- Uses of Clustering -- Introduction to the Iris Dataset -- Exercise 1: Exploring the Iris Dataset -- Types of Clustering -- Introduction to k-means Clustering -- Euclidean Distance -- Manhattan Distance -- Cosine Distance -- The Hamming Distance -- k-means Clustering Algorithm -- Steps to Implement k-means Clustering -- Exercise 2: Implementing k-means Clustering on the Iris Dataset -- Activity 1: k-means Clustering with Three Clusters -- Introduction to k-means Clustering with Built-In Functions -- k-means Clustering with Three Clusters -- Exercise 3: k-means Clustering with R Libraries -- Introduction to Market Segmentation -- Exercise 4: Exploring the Wholesale Customer Dataset -- Activity 2: Customer Segmentation with k-means -- Introduction to k-medoids Clustering -- The k-medoids Clustering Algorithm -- k-medoids Clustering Code -- Exercise 5: Implementing k-medoid Clustering -- k-means Clustering versus k-medoids Clustering -- Activity 3: Performing Customer Segmentation with k-medoids Clustering -- Deciding the Optimal Number of Clusters -- Types of Clustering Metrics -- Silhouette Score -- Exercise 6: Calculating the Silhouette Score -- Exercise 7: Identifying the Optimum Number of Clusters -- WSS/Elbow Method -- Exercise 8: Using WSS to Determine the Number of Clusters -- The Gap Statistic -- Exercise 9: Calculating the Ideal Number of Clusters with the Gap Statistic -- Activity 4: Finding the Ideal Number of Market Segments -- Summary -- Advanced Clustering Methods -- Introduction -- Introduction to k-modes Clustering -- Steps for k-Modes Clustering -- Exercise 10: Implementing k-modes Clustering -- Activity 5: Implementing k-modes Clustering on the Mushroom Dataset -- Introduction to Density-Based Clustering (DBSCAN)
Beschreibung:1 Online-Ressource (vi, 297 Seiten) Illustrationen, Diagramme
ISBN:9781789951462

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand!